ai-train_platform/util/yolo2pix_new.py

616 lines
26 KiB
Python
Raw Normal View History

2025-11-13 10:29:27 +08:00
import os
import zipfile
import shutil
import cv2
import numpy as np
from collections import defaultdict
import smb
import pandas as pd
import glob
from datetime import datetime
2025-11-13 10:29:27 +08:00
# ---------------- 常量 ----------------
CELL_AREA = 0.0036 # 每格面积 (平方米)
GRID_WIDTH = 108 # 网格像素宽
GRID_HEIGHT = 102 # 网格像素高
COVER_RATIO = 0.01 # mask 覆盖比例阈值
# ---------------- 路面类别映射 ----------------
CLASS_MAP_ASPHALT = {
"龟裂":0,"块状裂缝":1,"纵向裂缝":2,"横向裂缝":3,"沉陷":4,"车辙":5,"波浪拥包":6,"坑槽":7,"松散":8,"泛油":9,"修补":10
}
CLASS_MAP_CEMENT = {
"破碎板":0,"裂缝":1,"板角断裂":2,"错台":3,"拱起":4,"边角剥落":5,"接缝料损坏":6,"坑洞":7,"唧泥":8,"露骨":9,"修补":10
}
CLASS_MAP_GRAVEL = {
"坑槽":0,"沉陷":1,"车辙":2,"波浪搓板":3
}
ROAD_TYPE_EN_TO_CN = {
"asphalt":"沥青",
"cement":"水泥",
"gravel":"砾石"
}
2025-11-13 10:29:27 +08:00
# ---------------- 工具函数 ----------------
def num_to_coord(num, cols, cell_w, cell_h):
n = num - 1
r, c = divmod(n, cols)
x1, y1 = c * cell_w, r * cell_h
x2, y2 = x1 + cell_w, y1 + cell_h
return x1, y1, x2, y2
def draw_grid_on_image(image_path, grid_cells, cell_size=(GRID_WIDTH, GRID_HEIGHT), save_path=None):
image = cv2.imread(image_path)
if image is None: return
h, w = image.shape[:2]
cell_w, cell_h = cell_size
cols = w // cell_w
overlay = image.copy()
for cname, nums in grid_cells.items():
color = (np.random.randint(64,255),np.random.randint(64,255),np.random.randint(64,255))
for num in nums:
x1,y1,x2,y2 = num_to_coord(num, cols, cell_w, cell_h)
cv2.rectangle(overlay,(x1,y1),(x2,y2),color,-1)
cv2.addWeighted(overlay,0.4,image,0.6,0,image)
for i in range(0, w, cell_w):
cv2.line(image,(i,0),(i,h),(100,100,100),1)
for j in range(0, h, cell_h):
cv2.line(image,(0,j),(w,j),(100,100,100),1)
if save_path: cv2.imwrite(save_path,image)
return image
def detect_road_type_from_content(label_file):
"""根据标签内容判断路面类型"""
try:
with open(label_file,'r',encoding='utf-8') as f:
content = f.read()
except:
return "gravel"
for kw in CLASS_MAP_ASPHALT.keys():
if kw in content: return "asphalt"
for kw in CLASS_MAP_CEMENT.keys():
if kw in content: return "cement"
for kw in CLASS_MAP_GRAVEL.keys():
if kw in content: return "gravel"
return "gravel"
def get_road_info(road_dict, pile_dict, img_file_name):
"""获取路线信息"""
parts = pile_dict.get(img_file_name)
if parts :
road_code = parts[0]
road_info = road_dict.get(road_code)
if road_info :
data = road_info['data']
return data
return {}
def detect_road_type_from_road_dict(road_dict, pile_dict, img_file_name):
"""根据读取的excel内容内容判断路面类型"""
road_code = 'xxxxxxxxxxx'
pile_no = "xxxxx"
road_type = "asphalt"
parts = pile_dict.get(img_file_name)
if parts :
road_code = parts[0]
pile_no = parts[1]
road_info = road_dict.get(road_code)
if road_info :
data = road_info['data']
pile_no = parts[1]
road_type_cn = data['路面类型(沥青/水泥/砂石)']
identify_width = data['识别宽度(米)']
if road_type_cn == '沥青' :
road_type = "asphalt"
elif road_type_cn == '水泥' :
road_type = "cement"
elif road_type_cn == '砾石' :
road_type = "gravel"
return road_code, pile_no, road_type
def yoloseg_to_grid_share_dir(road_dict,pile_dict,image_path,label_file,cover_ratio=COVER_RATIO):
"""将YOLO-Seg标签转换成格子编号和类别"""
img_file_name = os.path.basename(image_path)
road_code, pile_no, road_type = detect_road_type_from_road_dict(road_dict, pile_dict, img_file_name)
if road_type=="asphalt": class_map = CLASS_MAP_ASPHALT
elif road_type=="cement": class_map = CLASS_MAP_CEMENT
else: class_map = CLASS_MAP_GRAVEL
class_names = list(class_map.keys())
img = cv2.imread(image_path)
if img is None: return "", {}
h, w = img.shape[:2]
cols = max(1, w//GRID_WIDTH)
rows = max(1, h//GRID_HEIGHT)
result_lines = []
all_class_cells = {}
with open(label_file,'r',encoding='utf-8') as f:
for line in f:
parts = line.strip().split()
if len(parts)<5: continue
cls_id = int(parts[0])
coords = [float(x) for x in parts[1:]]
if len(coords)%2!=0: coords=coords[:-1]
if len(coords)<6: continue
poly = np.array(coords,dtype=np.float32).reshape(-1,2)
poly[:,0]*=w
poly[:,1]*=h
mask = np.zeros((h,w),dtype=np.uint8)
cv2.fillPoly(mask,[poly.astype(np.int32)],255)
cell_info = []
covered_cells=[]
min_x = cols
min_y = rows
max_x = 0
max_y = 0
for r in range(rows):
for c in range(cols):
x1,y1 = c*GRID_WIDTH, r*GRID_HEIGHT
x2,y2 = min(w,x1+GRID_WIDTH), min(h,y1+GRID_HEIGHT)
region = mask[y1:y2, x1:x2]
if np.count_nonzero(region)/region.size>cover_ratio:
covered_cells.append(r*cols+c+1)
# 最小x坐标y坐标
if min_x > c :
min_x = c
if min_y > r :
min_y = r
# 最大x坐标y坐标
if max_x < c + 1 :
max_x = c + 1
if max_y < r + 1 :
max_y = r + 1
if not covered_cells: continue
# min_cell = covered_cells[0]
# max_cell = covered_cells[len(covered_cells)-1]
cname = class_names[cls_id] if cls_id<len(class_names) else str(cls_id)
ids_str = '-'.join(map(str,sorted(covered_cells)))+'-'
result_lines.append(f"{cname} {f"桩号:K000{pile_no}"} {ROAD_TYPE_EN_TO_CN.get(road_type, 'xx')} {ids_str}")
if cname not in all_class_cells: all_class_cells[cname]=set()
cell_info.append(covered_cells)
cell_info.append([max_x - min_x, max_y - min_y])
all_class_cells[cname] = cell_info
return '\n'.join(result_lines), all_class_cells, road_type, rows * cols
2025-11-13 10:29:27 +08:00
def yoloseg_to_grid(image_path,label_file,cover_ratio=COVER_RATIO):
"""将YOLO-Seg标签转换成格子编号和类别"""
road_type = detect_road_type_from_content(label_file)
if road_type=="asphalt": class_map = CLASS_MAP_ASPHALT
elif road_type=="cement": class_map = CLASS_MAP_CEMENT
else: class_map = CLASS_MAP_GRAVEL
class_names = list(class_map.keys())
img = cv2.imread(image_path)
if img is None: return "", {}
h, w = img.shape[:2]
cols = max(1, w//GRID_WIDTH)
rows = max(1, h//GRID_HEIGHT)
result_lines = []
all_class_cells = {}
with open(label_file,'r',encoding='utf-8') as f:
for line in f:
parts = line.strip().split()
if len(parts)<5: continue
cls_id = int(parts[0])
coords = [float(x) for x in parts[1:]]
if len(coords)%2!=0: coords=coords[:-1]
if len(coords)<6: continue
poly = np.array(coords,dtype=np.float32).reshape(-1,2)
poly[:,0]*=w
poly[:,1]*=h
mask = np.zeros((h,w),dtype=np.uint8)
cv2.fillPoly(mask,[poly.astype(np.int32)],255)
covered_cells=[]
for r in range(rows):
for c in range(cols):
x1,y1 = c*GRID_WIDTH, r*GRID_HEIGHT
x2,y2 = min(w,x1+GRID_WIDTH), min(h,y1+GRID_HEIGHT)
region = mask[y1:y2, x1:x2]
if np.count_nonzero(region)/region.size>cover_ratio:
covered_cells.append(r*cols+c+1)
if not covered_cells: continue
cname = class_names[cls_id] if cls_id<len(class_names) else str(cls_id)
ids_str = '-'.join(map(str,sorted(covered_cells)))+'-'
result_lines.append(f"{cname} {ids_str}")
if cname not in all_class_cells: all_class_cells[cname]=set()
all_class_cells[cname].update(covered_cells)
return '\n'.join(result_lines), all_class_cells, road_type
def generate_header(road_type):
if road_type=="asphalt": return "起点桩号(km),识别宽度(m),破损率DR(%),龟裂,块状裂缝,纵向裂缝,横向裂缝,沉陷,车辙,波浪拥包,坑槽,松散,泛油,修补"
if road_type=="cement": return "起点桩号(km),识别宽度(m),破损率DR(%),破碎板,裂缝,板角断裂,错台,拱起,边角剥落,接缝料损坏,坑洞,唧泥,露骨,修补"
if road_type=="gravel": return "起点桩号(km),识别宽度(m),破损率DR(%),坑槽,沉陷,车辙,波浪搓板"
return ""
def get_min_max_pile(group) :
min_pile = float(99.000)
max_pile = float(0.000)
for g in group :
tmp_pile = convert_special_format(g[0])
if min_pile > tmp_pile :
min_pile = tmp_pile
if max_pile < tmp_pile :
max_pile = tmp_pile
return min_pile, max_pile
def convert_special_format(input_str):
"""
将特殊格式字符串转换为浮点数
支持格式: "0+022" -> 0.022, "1+234" -> 1.234
"""
if '+' in input_str:
# 分割整数部分和小数部分
parts = input_str.split('+')
if len(parts) == 2:
integer_part = parts[0]
decimal_part = parts[1]
# 构建标准小数格式
standard_format = f"{integer_part}.{decimal_part}"
return float(standard_format)
else:
raise ValueError(f"无效的格式: {input_str}")
else:
# 如果没有 '+',直接转换
return float(input_str)
# 是否在区间内
def in_interval(increment, cur_pile_no, tmp_start, tmp_end) :
if increment > 0 :
if cur_pile_no >= tmp_start and cur_pile_no < tmp_end :
return True
else :
return False
else :
if cur_pile_no > tmp_end and cur_pile_no <= tmp_start :
return True
else :
return False
2025-11-13 10:29:27 +08:00
# ---------------- 主函数-共享目录 ----------------
def process_dir(road_dict,pile_dict,dir="output",cell_area=CELL_AREA,grid_width=GRID_WIDTH,grid_height=GRID_HEIGHT):
2025-11-13 10:29:27 +08:00
os.makedirs(dir,exist_ok=True)
# 解压
# 读取桩号映射
# 遍历图片
summary_data = []
for root,_,files in os.walk(dir):
for file in files:
if file.lower().endswith((".jpg",".png",".jpeg",".bmp")) :
image_path = os.path.join(root,file)
label_file = os.path.splitext(image_path)[0]+".txt"
if not os.path.exists(label_file):
print(f"⚠️ 找不到标签: {label_file}")
continue
out_txt, class_cells, road_type, all_cell_num = yoloseg_to_grid_share_dir(road_dict,pile_dict,image_path,label_file)
2025-11-13 10:29:27 +08:00
# 写每张图独立 _grid.txt
grid_txt_path = os.path.splitext(image_path)[0]+"_grid.txt"
with open(grid_txt_path,'w',encoding='utf-8') as f:
f.write(out_txt)
# 生成网格可视化
# draw_grid_on_image(image_path,class_cells,save_path=os.path.splitext(image_path)[0]+"_grid.jpg")
2025-11-13 10:29:27 +08:00
# 统计各类面积
counts = {k:[len(v[0])*cell_area, v[1][0], v[1][1]] for k,v in class_cells.items()}
# total_area = sum(counts.values())
# 灾害总面积比例
merged_set = set([])
for k,v in class_cells.items() :
merged_set = merged_set.union(v[0])
total_area = len(merged_set)
# 桩号 路线编号
parts = pile_dict.get(file)
pile_no = "0+000"
if parts :
pile_no = parts[1]
2025-11-13 10:29:27 +08:00
# 破损率 DR (%) = total_area / 总面积
# DR = total_area/ (total_area if total_area>0 else 1) *100 # 简化为100%或者0
DR= total_area / all_cell_num * 100
2025-11-13 10:29:27 +08:00
summary_data.append((pile_no, DR, counts, road_type))
current_time = datetime.now().strftime("%Y%m%d%H%M%S")
2025-11-13 10:29:27 +08:00
# 写桩号问题列表.txt
if summary_data:
img_file_name = os.path.basename(image_path)
road_data = get_road_info(road_dict, pile_dict, img_file_name)
road_code = pile_dict.get(img_file_name)[0]
2025-11-13 10:29:27 +08:00
road_type = summary_data[0][3]
min_pile, max_pile = get_min_max_pile(summary_data)
out_file = os.path.join(dir,f"{road_code}-DR-{min_pile:0.3f}-{max_pile:0.3f}-detail-{current_time}.txt")
2025-11-13 10:29:27 +08:00
header = generate_header(road_type)
with open(out_file,'w',encoding='utf-8') as f:
f.write(header+'\n')
for pile_no,DR,counts,rt in summary_data:
row = [pile_no,"3.6",f"{DR:.2f}"]
if road_type=="asphalt":
keys = list(CLASS_MAP_ASPHALT.keys())
elif road_type=="cement":
keys = list(CLASS_MAP_CEMENT.keys())
else:
keys = list(CLASS_MAP_GRAVEL.keys())
for k in keys:
row.append(f"{counts.get(k,[0,0,0])[0]:.2f}")
2025-11-13 10:29:27 +08:00
f.write(','.join(row)+'\n')
print(f"输出完成: {out_file}")
# 写灾害数据.txt
if summary_data:
img_file_name = os.path.basename(image_path)
road_data = get_road_info(road_dict, pile_dict, img_file_name)
identify_width = road_data.get('识别宽度(米)', '3.6')
up_or_down = road_data.get('方向(上行/下行)', '上行')
road_code = pile_dict.get(img_file_name)[0]
group_by_road_type = {}
for data in summary_data:
group_by_road_type.setdefault(data[3], []).append(data)
for road_type, group in group_by_road_type.items():
min_pile, max_pile = get_min_max_pile(group)
out_file = os.path.join(dir,f"{road_code}-DR-{min_pile:0.3f}-{max_pile:0.3f}-{current_time}.txt")
header = generate_header(road_type)
group_list = group
increment = float(0.010)
pile_no_start = float(0.000)
pile_no_end = float(0.000) + increment
# 上行/下行
if up_or_down == '下行' :
group_list = list(group)[::-1]
increment = float(-0.010)
tmp_pile_no = convert_special_format(group[len(group)-1][1])
pile_no_start = tmp_pile_no
if tmp_pile_no % increment != 0 :
pile_no_end = tmp_pile_no + (tmp_pile_no % increment)
else :
pile_no_end = tmp_pile_no + increment
with open(out_file,'w',encoding='utf-8') as f:
f.write(header+'\n')
index = 0
tmp_start = pile_no_start
tmp_end = pile_no_end
while True :
# 每10m一个区间在区间内进行灾害计算
pile_no, DR, counts, road_type = summary_data[index]
cur_pile_no = convert_special_format(pile_no)
if not in_interval(increment, cur_pile_no, tmp_start, tmp_end) :
# 没在刻度内直接输出无病害数据
pile_no = f"{tmp_start:0.3f}"
row = [pile_no,identify_width,f"{0:.2f}"]
if road_type=="asphalt":
keys = list(CLASS_MAP_ASPHALT.keys())
elif road_type=="cement":
keys = list(CLASS_MAP_CEMENT.keys())
else:
keys = list(CLASS_MAP_GRAVEL.keys())
for k in keys:
row.append(f"{0:.2f}")
f.write(','.join(row)+'\n')
else :
row = [f"{tmp_start:0.3f}", identify_width]
subRows = []
while index < len(group_list):
pile_no, DR, counts, road_type = summary_data[index]
cur_pile_no = convert_special_format(pile_no)
tmp_row = []
if in_interval(increment, cur_pile_no, tmp_start, tmp_end) :
pile_no = f"{tmp_start:0.3f}"
tmp_row = [DR]
if road_type=="asphalt":
keys = list(CLASS_MAP_ASPHALT.keys())
elif road_type=="cement":
keys = list(CLASS_MAP_CEMENT.keys())
else:
keys = list(CLASS_MAP_GRAVEL.keys())
for k in keys:
tmp_row.append(counts.get(k, [0,0,0])[0])
subRows.append(tmp_row)
index = index + 1
else :
break
# 同列汇总 10m一个区间--对应5张图
column_sums = [f"{(sum(column)/5):0.2f}" for column in zip(*subRows)]
row += column_sums
f.write(','.join(row)+'\n')
tmp_start = tmp_end
tmp_end = tmp_start + increment
print(f"tmp_start={tmp_start}, tmp_end={tmp_end}, index={index}, len(group_list)={len(group_list)}")
if index >= len(group_list) :
break
print(f"输出完成: {out_file}")
# 病害明显列表.xlsx
headers = ['序号','路线编码','方向','桩号','路面类型','病害名称','程度','长度(m)',' 宽度(m)',' 面积(㎡)',' 横向位置','备注']
data_list = []
if summary_data:
img_file_path = os.path.dirname(image_path)
img_file_name = os.path.basename(image_path)
road_data = get_road_info(road_dict, pile_dict, img_file_name)
road_code, pile_no, road_type = detect_road_type_from_road_dict(road_dict, pile_dict, img_file_name)
identify_width = road_data.get('识别宽度(米)', '3.6')
up_or_down = road_data.get('方向(上行/下行)', '上行')
excel_index = 1
for data in summary_data:
damage_data = data[2]
for attr_name, attr_value in damage_data.items():
excel_data = [excel_index, road_code, up_or_down, f"K000{data[0]}", ROAD_TYPE_EN_TO_CN.get(road_type), attr_name, '', attr_value[1]*cell_area, attr_value[2]*cell_area, attr_value[0], '', '']
data_list.append(excel_data)
all_data = [headers] + data_list
smb.write_to_excel_pandas(all_data, img_file_path + '/病害明显列表.xlsx')
2025-11-13 10:29:27 +08:00
# ---------------- 主函数 ----------------
def process_zip(zip_path,pile_map_file,output_dir="output",cell_area=CELL_AREA,grid_width=GRID_WIDTH,grid_height=GRID_HEIGHT):
if not os.path.exists(zip_path):
raise FileNotFoundError(f"{zip_path} 不存在")
os.makedirs(output_dir,exist_ok=True)
# 解压
with zipfile.ZipFile(zip_path,'r') as zip_ref:
zip_ref.extractall(output_dir)
# 读取桩号映射
pile_dict = {}
with open(pile_map_file,'r',encoding='utf-8') as f:
for line in f:
parts = line.strip().split("->")
if len(parts)>=4:
pile_dict[parts[3]]=parts # filename -> 桩号
2025-11-13 10:29:27 +08:00
# 遍历图片
summary_data = []
for root,_,files in os.walk(output_dir):
for file in files:
if file.lower().endswith((".jpg",".png",".jpeg",".bmp")) :
image_path = os.path.join(root,file)
label_file = os.path.splitext(image_path)[0]+".txt"
if not os.path.exists(label_file):
print(f"⚠️ 找不到标签: {label_file}")
continue
out_txt, class_cells, road_type, = yoloseg_to_grid(image_path,label_file)
2025-11-13 10:29:27 +08:00
# 写每张图独立 _grid.txt
grid_txt_path = os.path.splitext(image_path)[0]+"_grid.txt"
with open(grid_txt_path,'w',encoding='utf-8') as f:
f.write(out_txt)
# 生成网格可视化
draw_grid_on_image(image_path,class_cells,save_path=os.path.splitext(image_path)[0]+"_grid.jpg")
# 统计各类面积
counts = {k:len(v)*cell_area for k,v in class_cells.items()}
total_area = sum(counts.values())
# 桩号
pile_no = pile_dict.get(file,"0+000")
2025-11-13 10:29:27 +08:00
# 破损率 DR (%) = total_area / 总面积
DR = total_area / (total_area if total_area > 0 else 1) * 100 # 简化为100%或者0
2025-11-13 10:29:27 +08:00
summary_data.append((pile_no, DR, counts, road_type))
# 写桩号问题列表.txt
if summary_data:
road_type = summary_data[0][3]
out_file = os.path.join(output_dir,"桩号问题列表.txt")
header = generate_header(road_type)
with open(out_file,'w',encoding='utf-8') as f:
f.write(header+'\n')
for pile_no,DR,counts,rt in summary_data:
row = [pile_no,"3.6",f"{DR:.2f}"]
if road_type=="asphalt":
keys = list(CLASS_MAP_ASPHALT.keys())
elif road_type=="cement":
keys = list(CLASS_MAP_CEMENT.keys())
else:
keys = list(CLASS_MAP_GRAVEL.keys())
for k in keys:
row.append(f"{counts.get(k,0):.2f}")
f.write(','.join(row)+'\n')
print(f"✅ 输出完成: {out_file}")
# 路线编码 -> 路线信息
def get_road_dict(local_dir):
"""
从本地目录读取Excel文件构建路线字典
Args:
local_dir: 本地目录路径
Returns:
dict: 路线编码到路线信息的映射字典
"""
# 查找匹配的Excel文件
pattern = os.path.join(local_dir, '每公里指标明细表*.xls')
found_paths = glob.glob(pattern)
print(f"\n找到 {len(found_paths)}'每公里指标明细表*.xls' 文件:")
for i, path in enumerate(found_paths, 1):
print(f"{i}. {path}")
road_dict = {}
if len(found_paths) > 0:
# 读取第一个匹配的Excel文件
df = pd.read_excel(found_paths[0])
# 处理所有行(这里需要根据实际情况调整处理逻辑)
for index, row in df.iterrows():
data = row.to_dict()
if pd.notna(data.get('线路编码', None)):
up_or_down = 'A'
if data.get('方向(上行/下行)', '') == '下行':
up_or_down = 'B'
# 构建key确保区划代码为整数
area_code = data.get('区划代码', '')
if pd.notna(area_code):
area_code = str(int(float(area_code))) if str(area_code).replace('.', '').isdigit() else str(area_code)
else:
area_code = ''
key = f"{data['线路编码']}{area_code}{up_or_down}"
if key in road_dict:
road_dict[key].append({'index': index, 'data': data})
else:
road_dict[key] = [{'index': index, 'data': data}]
return road_dict
# filename -> 桩号
def get_pile_dict(local_dir):
"""
从本地目录读取fileindex.txt文件构建桩号字典
Args:
local_dir: 本地目录路径
Returns:
dict: 文件名到桩号信息的映射字典
"""
# 查找fileindex.txt文件
pattern = os.path.join(local_dir, 'fileindex.txt')
found_paths = glob.glob(pattern)
print(f"\n找到 {len(found_paths)}'fileindex.txt' 文件:")
for i, path in enumerate(found_paths, 1):
print(f"{i}. {path}")
pile_dict = {}
if len(found_paths) > 0:
# 读取第一个匹配的txt文件
with open(found_paths[0], 'r', encoding='utf-8') as file:
lines = file.readlines()
for i, line in enumerate(lines, 1):
parts = line.strip().split("->")
if len(parts) >= 4:
pile_dict[parts[3]] = parts # filename -> 桩号
return pile_dict
2025-11-13 10:29:27 +08:00
# ---------------- 示例调用 ----------------
if __name__=="__main__":
# zip_path = "D:/devForBdzlWork/ai-train_platform/predict/inferenceResult.zip" # 输入 ZIP 文件
# pile_map_file = "D:/devForBdzlWork/ai-train_platform/predict/pile_map.txt" # 图片名 -> 桩号
# process_zip(zip_path=zip_path,pile_map_file=pile_map_file,output_dir="output")
# output_dir = "D:/devForBdzlWork/ai-train_platform/predictions/7"
# pile_dict = smb.get_pile_dict("192.168.110.114/share_File/西南计算机", "administrator", "abc@1234")
# road_dict = smb.get_road_dict("192.168.110.114/share_File/西南计算机", "administrator", "abc@1234")
# process_dir(road_dict, pile_dict, output_dir)
output_dir = "D:/devForBdzlWork/ai-train_platform/predictions/7"
pile_dict = get_pile_dict(output_dir)
road_dict = get_road_dict(output_dir)
process_dir(road_dict, pile_dict, output_dir)