共享目录:灾害数据输出格式化文件
This commit is contained in:
parent
d93a81c802
commit
d3d2d23f18
@ -692,10 +692,14 @@ class YOLOSegmentationInference:
|
||||
results.append(result)
|
||||
|
||||
# 推送识别数据到共享目录
|
||||
pile_dict = get_pile_dict(image_path, user_name, pwd)
|
||||
process_dir(pile_dict, output_dir)
|
||||
tmpConfig = get_conf(input_dir, user_name, pwd)
|
||||
pile_dict = get_pile_dict(input_dir, user_name, pwd)
|
||||
road_dict = get_road_dict(f"{tmpConfig['ip']}/{tmpConfig['share']}", user_name, pwd)
|
||||
process_dir(road_dict, pile_dict, output_dir)
|
||||
current_time = datetime.now().strftime("%Y%m%d%H%M%S")
|
||||
scanner.upload_directory(output_dir, config['share'], remote_dir=input_dir+f"_识别/{task_id}/{current_time}")
|
||||
|
||||
remote_dir = f"{tmpConfig['dir']}_识别/{task_id}/{current_time}"
|
||||
# scanner.upload_directory(output_dir, config['share'], remote_dir=remote_dir)
|
||||
|
||||
return results
|
||||
|
||||
@ -894,7 +898,8 @@ def predict_images_share_dir(task_id, pt_name, zip_url, user_name, pwd, output_d
|
||||
scanner = get_scanner(zip_url, user_name, pwd)
|
||||
found_paths = scanner.find_folders_by_name(
|
||||
share_path=config['share'],
|
||||
folder_name='图像类'
|
||||
folder_name='图像类',
|
||||
start_dir=config['dir']
|
||||
)
|
||||
|
||||
target_path = "" # 识别图片目录
|
||||
|
||||
106
util/smb.py
106
util/smb.py
@ -86,13 +86,13 @@ class SMBScanner:
|
||||
results = []
|
||||
|
||||
for row_number, (index, row) in enumerate(df.iterrows(), 1):
|
||||
print(f"\n处理第 {row_number} 行:")
|
||||
print("-" * 40)
|
||||
# print(f"\n处理第 {row_number} 行:")
|
||||
# print("-" * 40)
|
||||
|
||||
# 显示行数据
|
||||
for col_name in df.columns:
|
||||
value = row[col_name]
|
||||
print(f" {col_name}: {value}")
|
||||
# print(f" {col_name}: {value}")
|
||||
|
||||
# 处理逻辑(根据实际需求修改)
|
||||
processed_row = {
|
||||
@ -108,7 +108,7 @@ class SMBScanner:
|
||||
if row_number % 10 == 0 or row_number == len(df):
|
||||
print(f"\n 进度: {row_number}/{len(df)} ({row_number/len(df)*100:.1f}%)")
|
||||
|
||||
print("\n" + "=" * 60)
|
||||
# print("\n" + "=" * 60)
|
||||
print(f"处理完成!共处理 {len(results)} 行数据")
|
||||
|
||||
return results
|
||||
@ -751,28 +751,77 @@ def get_scanner(zip_url, user_name, pwd) :
|
||||
)
|
||||
return scanner
|
||||
|
||||
# 路线编码 -> 路线信息
|
||||
def get_road_dict(dir,user_name,pwd) :
|
||||
config = get_conf(dir, user_name, pwd)
|
||||
scanner = get_scanner(dir, user_name=user_name, pwd=pwd)
|
||||
found_paths = scanner.find_files_by_name(
|
||||
share_path=config['share'],
|
||||
file_name='每公里指标明细表*.xls',
|
||||
start_dir=config['dir']
|
||||
)
|
||||
print(f"\n找到 {len(found_paths)} 个 'fileindex.txt' 文件:")
|
||||
for i, path in enumerate(found_paths, 1):
|
||||
print(f"{i}. {path}")
|
||||
|
||||
road_dict = {}
|
||||
if len(found_paths) > 0 :
|
||||
df = scanner.read_excel(found_paths[0])
|
||||
rows = scanner.process_all_rows(df)
|
||||
for i, row in enumerate(rows, 1):
|
||||
data = row['data']
|
||||
if pd.notna(data['线路编码']) :
|
||||
up_or_down = 'A'
|
||||
if data['方向(上行/下行)'] == '下行' :
|
||||
up_or_down = 'B'
|
||||
key = f"{data['线路编码']}{str(int(data['区划代码']))}{up_or_down}"
|
||||
if road_dict.get(key) :
|
||||
road_dict[key].append(row)
|
||||
else :
|
||||
road_dict[key] = [row] # 路线编码 -> 路线信息
|
||||
|
||||
return road_dict
|
||||
|
||||
# filename -> 桩号
|
||||
def get_pile_dict(dir,user_name,pwd) :
|
||||
config = get_conf(dir, user_name, pwd)
|
||||
scanner = get_scanner(dir, user_name=user_name, pwd=pwd)
|
||||
found_paths = scanner.find_files_by_name(
|
||||
share_path=config['share'],
|
||||
file_name='fileindex.txt'
|
||||
file_name='fileindex.txt',
|
||||
start_dir=config['dir']
|
||||
)
|
||||
print(f"\n找到 {len(found_paths)} 个 'fileindex.txt' 文件:")
|
||||
for i, path in enumerate(found_paths, 1):
|
||||
print(f"{i}. {path}")
|
||||
|
||||
lines = scanner.read_txt_by_line(full_path=found_paths[0])
|
||||
|
||||
pile_dict = {}
|
||||
for i, line in enumerate(lines, 1):
|
||||
parts = line.strip().split("->")
|
||||
if len(parts)>=4:
|
||||
pile_dict[parts[3]]=parts[1] # filename -> 桩号
|
||||
if len(found_paths) > 0 :
|
||||
lines = scanner.read_txt_by_line(full_path=found_paths[0])
|
||||
for i, line in enumerate(lines, 1):
|
||||
parts = line.strip().split("->")
|
||||
if len(parts)>=4:
|
||||
pile_dict[parts[3]]=parts # filename -> 桩号
|
||||
|
||||
return pile_dict
|
||||
|
||||
|
||||
def write_to_excel_pandas(data, filename, sheet_name='Sheet1'):
|
||||
"""
|
||||
使用 pandas 将数据写入 Excel
|
||||
|
||||
Args:
|
||||
data: 数据列表,每个元素是一行
|
||||
filename: 输出文件名
|
||||
sheet_name: 工作表名称
|
||||
"""
|
||||
# 创建 DataFrame
|
||||
df = pd.DataFrame(data)
|
||||
|
||||
# 写入 Excel
|
||||
df.to_excel(filename, sheet_name=sheet_name, index=False, header=False)
|
||||
print(f"数据已写入 {filename}")
|
||||
|
||||
def main():
|
||||
# 配置信息
|
||||
config = {
|
||||
@ -825,6 +874,15 @@ def main():
|
||||
# for i, path in enumerate(found_paths, 1):
|
||||
# print(f"{i}. {path}")
|
||||
|
||||
# # 查找指定文件
|
||||
# found_paths = scanner.find_files_by_name(
|
||||
# share_path=config['share'],
|
||||
# file_name='每公里指标明细表*.xls'
|
||||
# )
|
||||
# print(f"\n找到 {len(found_paths)} 个")
|
||||
# for i, path in enumerate(found_paths, 1):
|
||||
# print(f"{i}. {path}")
|
||||
|
||||
|
||||
# # 查找指定目录中的所有图片
|
||||
# full_path = scanner.build_full_path(share_path=config['share'], file_path='西南计算机\\AA县\\报送数据')
|
||||
@ -833,9 +891,21 @@ def main():
|
||||
# print(f"{i}. {path}")
|
||||
|
||||
# # 读取excel
|
||||
# full_path = scanner.build_full_path(share_path=config['share'], file_path='西南计算机\\AA县\\24年年报.xlsx')
|
||||
# full_path = scanner.build_full_path(share_path=config['share'], file_path='西南计算机\\AA县\\每公里指标明细表(北碚).xls')
|
||||
# df = scanner.read_excel(full_path)
|
||||
# scanner.process_all_rows(df)
|
||||
# rows = scanner.process_all_rows(df)
|
||||
# road_dict = {}
|
||||
# for i, row in enumerate(rows, 1):
|
||||
# data = row['data']
|
||||
# if pd.notna(data['线路编码']) :
|
||||
# up_or_down = 'A'
|
||||
# if data['方向(上行/下行)'] == '下行' :
|
||||
# up_or_down = 'B'
|
||||
# key = f"{data['线路编码']}{str(int(data['区划代码']))}{up_or_down}"
|
||||
# if road_dict.get(key) :
|
||||
# road_dict[key].append(row)
|
||||
# else :
|
||||
# road_dict[key] = [row] # 路线编码 -> 路线信息
|
||||
|
||||
|
||||
# 读取txt
|
||||
@ -847,13 +917,19 @@ def main():
|
||||
# for i, path in enumerate(found_paths, 1):
|
||||
# print(f"{i}. {path}")
|
||||
|
||||
# 读取txt
|
||||
# lines = scanner.read_txt_by_line(full_path=found_paths[0])
|
||||
# for i, line in enumerate(lines, 1):
|
||||
# print(f"{i}. {line}")
|
||||
|
||||
output_dir = "D:/devForBdzlWork/ai-train_platform/predictions"
|
||||
scanner.upload_directory(output_dir, config['share'], remote_dir="西南计算机/AA县/报送数据_识别")
|
||||
# 上传目录
|
||||
# output_dir = "D:/devForBdzlWork/ai-train_platform/predictions"
|
||||
# scanner.upload_directory(output_dir, config['share'], remote_dir="西南计算机/AA县/报送数据_识别")
|
||||
|
||||
# get_pile_dict
|
||||
# input_dir = "192.168.110.114/share_File/西南计算机/AA县/报送数据/图像类/CD45500155A/Images"
|
||||
# pile_dict = get_pile_dict(input_dir, config['username'], config['password'])
|
||||
# print("-------------------------------------------")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@ -5,6 +5,9 @@ import cv2
|
||||
import numpy as np
|
||||
from collections import defaultdict
|
||||
import smb
|
||||
import pandas as pd
|
||||
import glob
|
||||
from datetime import datetime
|
||||
|
||||
# ---------------- 常量 ----------------
|
||||
CELL_AREA = 0.0036 # 每格面积 (平方米)
|
||||
@ -23,6 +26,12 @@ CLASS_MAP_GRAVEL = {
|
||||
"坑槽":0,"沉陷":1,"车辙":2,"波浪搓板":3
|
||||
}
|
||||
|
||||
ROAD_TYPE_EN_TO_CN = {
|
||||
"asphalt":"沥青",
|
||||
"cement":"水泥",
|
||||
"gravel":"砾石"
|
||||
}
|
||||
|
||||
# ---------------- 工具函数 ----------------
|
||||
def num_to_coord(num, cols, cell_w, cell_h):
|
||||
n = num - 1
|
||||
@ -66,6 +75,107 @@ def detect_road_type_from_content(label_file):
|
||||
if kw in content: return "gravel"
|
||||
return "gravel"
|
||||
|
||||
def get_road_info(road_dict, pile_dict, img_file_name):
|
||||
"""获取路线信息"""
|
||||
parts = pile_dict.get(img_file_name)
|
||||
if parts :
|
||||
road_code = parts[0]
|
||||
road_info = road_dict.get(road_code)
|
||||
if road_info :
|
||||
data = road_info['data']
|
||||
return data
|
||||
return {}
|
||||
|
||||
def detect_road_type_from_road_dict(road_dict, pile_dict, img_file_name):
|
||||
"""根据读取的excel内容内容判断路面类型"""
|
||||
road_code = 'xxxxxxxxxxx'
|
||||
pile_no = "xxxxx"
|
||||
road_type = "asphalt"
|
||||
parts = pile_dict.get(img_file_name)
|
||||
if parts :
|
||||
road_code = parts[0]
|
||||
pile_no = parts[1]
|
||||
road_info = road_dict.get(road_code)
|
||||
if road_info :
|
||||
data = road_info['data']
|
||||
pile_no = parts[1]
|
||||
road_type_cn = data['路面类型(沥青/水泥/砂石)']
|
||||
identify_width = data['识别宽度(米)']
|
||||
if road_type_cn == '沥青' :
|
||||
road_type = "asphalt"
|
||||
elif road_type_cn == '水泥' :
|
||||
road_type = "cement"
|
||||
elif road_type_cn == '砾石' :
|
||||
road_type = "gravel"
|
||||
return road_code, pile_no, road_type
|
||||
|
||||
def yoloseg_to_grid_share_dir(road_dict,pile_dict,image_path,label_file,cover_ratio=COVER_RATIO):
|
||||
"""将YOLO-Seg标签转换成格子编号和类别"""
|
||||
img_file_name = os.path.basename(image_path)
|
||||
road_code, pile_no, road_type = detect_road_type_from_road_dict(road_dict, pile_dict, img_file_name)
|
||||
if road_type=="asphalt": class_map = CLASS_MAP_ASPHALT
|
||||
elif road_type=="cement": class_map = CLASS_MAP_CEMENT
|
||||
else: class_map = CLASS_MAP_GRAVEL
|
||||
class_names = list(class_map.keys())
|
||||
|
||||
img = cv2.imread(image_path)
|
||||
if img is None: return "", {}
|
||||
h, w = img.shape[:2]
|
||||
cols = max(1, w//GRID_WIDTH)
|
||||
rows = max(1, h//GRID_HEIGHT)
|
||||
|
||||
result_lines = []
|
||||
all_class_cells = {}
|
||||
with open(label_file,'r',encoding='utf-8') as f:
|
||||
for line in f:
|
||||
parts = line.strip().split()
|
||||
if len(parts)<5: continue
|
||||
cls_id = int(parts[0])
|
||||
coords = [float(x) for x in parts[1:]]
|
||||
if len(coords)%2!=0: coords=coords[:-1]
|
||||
if len(coords)<6: continue
|
||||
poly = np.array(coords,dtype=np.float32).reshape(-1,2)
|
||||
poly[:,0]*=w
|
||||
poly[:,1]*=h
|
||||
mask = np.zeros((h,w),dtype=np.uint8)
|
||||
cv2.fillPoly(mask,[poly.astype(np.int32)],255)
|
||||
cell_info = []
|
||||
covered_cells=[]
|
||||
min_x = cols
|
||||
min_y = rows
|
||||
max_x = 0
|
||||
max_y = 0
|
||||
for r in range(rows):
|
||||
for c in range(cols):
|
||||
x1,y1 = c*GRID_WIDTH, r*GRID_HEIGHT
|
||||
x2,y2 = min(w,x1+GRID_WIDTH), min(h,y1+GRID_HEIGHT)
|
||||
region = mask[y1:y2, x1:x2]
|
||||
if np.count_nonzero(region)/region.size>cover_ratio:
|
||||
covered_cells.append(r*cols+c+1)
|
||||
# 最小x坐标,y坐标
|
||||
if min_x > c :
|
||||
min_x = c
|
||||
if min_y > r :
|
||||
min_y = r
|
||||
# 最大x坐标,y坐标
|
||||
if max_x < c + 1 :
|
||||
max_x = c + 1
|
||||
if max_y < r + 1 :
|
||||
max_y = r + 1
|
||||
|
||||
if not covered_cells: continue
|
||||
# min_cell = covered_cells[0]
|
||||
# max_cell = covered_cells[len(covered_cells)-1]
|
||||
|
||||
cname = class_names[cls_id] if cls_id<len(class_names) else str(cls_id)
|
||||
ids_str = '-'.join(map(str,sorted(covered_cells)))+'-'
|
||||
result_lines.append(f"{cname} {f"桩号:K000{pile_no}"} {ROAD_TYPE_EN_TO_CN.get(road_type, 'xx')} {ids_str}")
|
||||
if cname not in all_class_cells: all_class_cells[cname]=set()
|
||||
cell_info.append(covered_cells)
|
||||
cell_info.append([max_x - min_x, max_y - min_y])
|
||||
all_class_cells[cname] = cell_info
|
||||
return '\n'.join(result_lines), all_class_cells, road_type, rows * cols
|
||||
|
||||
def yoloseg_to_grid(image_path,label_file,cover_ratio=COVER_RATIO):
|
||||
"""将YOLO-Seg标签转换成格子编号和类别"""
|
||||
road_type = detect_road_type_from_content(label_file)
|
||||
@ -117,9 +227,55 @@ def generate_header(road_type):
|
||||
if road_type=="gravel": return "起点桩号(km),识别宽度(m),破损率DR(%),坑槽,沉陷,车辙,波浪搓板"
|
||||
return ""
|
||||
|
||||
def get_min_max_pile(group) :
|
||||
min_pile = float(99.000)
|
||||
max_pile = float(0.000)
|
||||
for g in group :
|
||||
tmp_pile = convert_special_format(g[0])
|
||||
if min_pile > tmp_pile :
|
||||
min_pile = tmp_pile
|
||||
if max_pile < tmp_pile :
|
||||
max_pile = tmp_pile
|
||||
|
||||
return min_pile, max_pile
|
||||
|
||||
def convert_special_format(input_str):
|
||||
"""
|
||||
将特殊格式字符串转换为浮点数
|
||||
支持格式: "0+022" -> 0.022, "1+234" -> 1.234
|
||||
"""
|
||||
if '+' in input_str:
|
||||
# 分割整数部分和小数部分
|
||||
parts = input_str.split('+')
|
||||
if len(parts) == 2:
|
||||
integer_part = parts[0]
|
||||
decimal_part = parts[1]
|
||||
|
||||
# 构建标准小数格式
|
||||
standard_format = f"{integer_part}.{decimal_part}"
|
||||
return float(standard_format)
|
||||
else:
|
||||
raise ValueError(f"无效的格式: {input_str}")
|
||||
else:
|
||||
# 如果没有 '+',直接转换
|
||||
return float(input_str)
|
||||
|
||||
# 是否在区间内
|
||||
def in_interval(increment, cur_pile_no, tmp_start, tmp_end) :
|
||||
if increment > 0 :
|
||||
if cur_pile_no >= tmp_start and cur_pile_no < tmp_end :
|
||||
return True
|
||||
else :
|
||||
return False
|
||||
else :
|
||||
if cur_pile_no > tmp_end and cur_pile_no <= tmp_start :
|
||||
return True
|
||||
else :
|
||||
return False
|
||||
|
||||
|
||||
# ---------------- 主函数-共享目录 ----------------
|
||||
def process_dir(pile_dict,dir="output",cell_area=CELL_AREA,grid_width=GRID_WIDTH,grid_height=GRID_HEIGHT):
|
||||
def process_dir(road_dict,pile_dict,dir="output",cell_area=CELL_AREA,grid_width=GRID_WIDTH,grid_height=GRID_HEIGHT):
|
||||
os.makedirs(dir,exist_ok=True)
|
||||
# 解压
|
||||
# 读取桩号映射
|
||||
@ -133,26 +289,43 @@ def process_dir(pile_dict,dir="output",cell_area=CELL_AREA,grid_width=GRID_WIDTH
|
||||
if not os.path.exists(label_file):
|
||||
print(f"⚠️ 找不到标签: {label_file}")
|
||||
continue
|
||||
out_txt, class_cells, road_type = yoloseg_to_grid(image_path,label_file)
|
||||
out_txt, class_cells, road_type, all_cell_num = yoloseg_to_grid_share_dir(road_dict,pile_dict,image_path,label_file)
|
||||
# 写每张图独立 _grid.txt
|
||||
grid_txt_path = os.path.splitext(image_path)[0]+"_grid.txt"
|
||||
with open(grid_txt_path,'w',encoding='utf-8') as f:
|
||||
f.write(out_txt)
|
||||
# 生成网格可视化
|
||||
draw_grid_on_image(image_path,class_cells,save_path=os.path.splitext(image_path)[0]+"_grid.jpg")
|
||||
# draw_grid_on_image(image_path,class_cells,save_path=os.path.splitext(image_path)[0]+"_grid.jpg")
|
||||
# 统计各类面积
|
||||
counts = {k:len(v)*cell_area for k,v in class_cells.items()}
|
||||
total_area = sum(counts.values())
|
||||
# 桩号
|
||||
pile_no = pile_dict.get(file,"未知")
|
||||
counts = {k:[len(v[0])*cell_area, v[1][0], v[1][1]] for k,v in class_cells.items()}
|
||||
# total_area = sum(counts.values())
|
||||
# 灾害总面积比例
|
||||
merged_set = set([])
|
||||
for k,v in class_cells.items() :
|
||||
merged_set = merged_set.union(v[0])
|
||||
total_area = len(merged_set)
|
||||
|
||||
# 桩号 路线编号
|
||||
parts = pile_dict.get(file)
|
||||
pile_no = "0+000"
|
||||
if parts :
|
||||
pile_no = parts[1]
|
||||
|
||||
# 破损率 DR (%) = total_area / 总面积
|
||||
DR = total_area/ (total_area if total_area>0 else 1) *100 # 简化为100%或者0
|
||||
# DR = total_area/ (total_area if total_area>0 else 1) *100 # 简化为100%或者0
|
||||
DR= total_area / all_cell_num * 100
|
||||
summary_data.append((pile_no, DR, counts, road_type))
|
||||
|
||||
current_time = datetime.now().strftime("%Y%m%d%H%M%S")
|
||||
# 写桩号问题列表.txt
|
||||
if summary_data:
|
||||
img_file_name = os.path.basename(image_path)
|
||||
road_data = get_road_info(road_dict, pile_dict, img_file_name)
|
||||
road_code = pile_dict.get(img_file_name)[0]
|
||||
road_type = summary_data[0][3]
|
||||
out_file = os.path.join(dir,"桩号问题列表.txt")
|
||||
|
||||
min_pile, max_pile = get_min_max_pile(summary_data)
|
||||
out_file = os.path.join(dir,f"{road_code}-DR-{min_pile:0.3f}-{max_pile:0.3f}-detail-{current_time}.txt")
|
||||
header = generate_header(road_type)
|
||||
with open(out_file,'w',encoding='utf-8') as f:
|
||||
f.write(header+'\n')
|
||||
@ -165,9 +338,121 @@ def process_dir(pile_dict,dir="output",cell_area=CELL_AREA,grid_width=GRID_WIDTH
|
||||
else:
|
||||
keys = list(CLASS_MAP_GRAVEL.keys())
|
||||
for k in keys:
|
||||
row.append(f"{counts.get(k,0):.2f}")
|
||||
row.append(f"{counts.get(k,[0,0,0])[0]:.2f}")
|
||||
f.write(','.join(row)+'\n')
|
||||
print(f"✅ 输出完成: {out_file}")
|
||||
print(f"输出完成: {out_file}")
|
||||
|
||||
# 写灾害数据.txt
|
||||
if summary_data:
|
||||
img_file_name = os.path.basename(image_path)
|
||||
road_data = get_road_info(road_dict, pile_dict, img_file_name)
|
||||
identify_width = road_data.get('识别宽度(米)', '3.6')
|
||||
up_or_down = road_data.get('方向(上行/下行)', '上行')
|
||||
road_code = pile_dict.get(img_file_name)[0]
|
||||
group_by_road_type = {}
|
||||
for data in summary_data:
|
||||
group_by_road_type.setdefault(data[3], []).append(data)
|
||||
|
||||
|
||||
for road_type, group in group_by_road_type.items():
|
||||
min_pile, max_pile = get_min_max_pile(group)
|
||||
out_file = os.path.join(dir,f"{road_code}-DR-{min_pile:0.3f}-{max_pile:0.3f}-{current_time}.txt")
|
||||
header = generate_header(road_type)
|
||||
|
||||
group_list = group
|
||||
increment = float(0.010)
|
||||
pile_no_start = float(0.000)
|
||||
pile_no_end = float(0.000) + increment
|
||||
# 上行/下行
|
||||
if up_or_down == '下行' :
|
||||
group_list = list(group)[::-1]
|
||||
increment = float(-0.010)
|
||||
tmp_pile_no = convert_special_format(group[len(group)-1][1])
|
||||
pile_no_start = tmp_pile_no
|
||||
if tmp_pile_no % increment != 0 :
|
||||
pile_no_end = tmp_pile_no + (tmp_pile_no % increment)
|
||||
else :
|
||||
pile_no_end = tmp_pile_no + increment
|
||||
|
||||
with open(out_file,'w',encoding='utf-8') as f:
|
||||
f.write(header+'\n')
|
||||
index = 0
|
||||
tmp_start = pile_no_start
|
||||
tmp_end = pile_no_end
|
||||
while True :
|
||||
# 每10m一个区间,在区间内进行灾害计算
|
||||
pile_no, DR, counts, road_type = summary_data[index]
|
||||
cur_pile_no = convert_special_format(pile_no)
|
||||
if not in_interval(increment, cur_pile_no, tmp_start, tmp_end) :
|
||||
# 没在刻度内直接输出无病害数据
|
||||
pile_no = f"{tmp_start:0.3f}"
|
||||
row = [pile_no,identify_width,f"{0:.2f}"]
|
||||
if road_type=="asphalt":
|
||||
keys = list(CLASS_MAP_ASPHALT.keys())
|
||||
elif road_type=="cement":
|
||||
keys = list(CLASS_MAP_CEMENT.keys())
|
||||
else:
|
||||
keys = list(CLASS_MAP_GRAVEL.keys())
|
||||
for k in keys:
|
||||
row.append(f"{0:.2f}")
|
||||
f.write(','.join(row)+'\n')
|
||||
else :
|
||||
row = [f"{tmp_start:0.3f}", identify_width]
|
||||
subRows = []
|
||||
while index < len(group_list):
|
||||
pile_no, DR, counts, road_type = summary_data[index]
|
||||
cur_pile_no = convert_special_format(pile_no)
|
||||
|
||||
tmp_row = []
|
||||
if in_interval(increment, cur_pile_no, tmp_start, tmp_end) :
|
||||
pile_no = f"{tmp_start:0.3f}"
|
||||
tmp_row = [DR]
|
||||
if road_type=="asphalt":
|
||||
keys = list(CLASS_MAP_ASPHALT.keys())
|
||||
elif road_type=="cement":
|
||||
keys = list(CLASS_MAP_CEMENT.keys())
|
||||
else:
|
||||
keys = list(CLASS_MAP_GRAVEL.keys())
|
||||
for k in keys:
|
||||
tmp_row.append(counts.get(k, [0,0,0])[0])
|
||||
subRows.append(tmp_row)
|
||||
index = index + 1
|
||||
else :
|
||||
break
|
||||
|
||||
# 同列汇总 10m一个区间--对应5张图
|
||||
column_sums = [f"{(sum(column)/5):0.2f}" for column in zip(*subRows)]
|
||||
row += column_sums
|
||||
f.write(','.join(row)+'\n')
|
||||
|
||||
tmp_start = tmp_end
|
||||
tmp_end = tmp_start + increment
|
||||
|
||||
print(f"tmp_start={tmp_start}, tmp_end={tmp_end}, index={index}, len(group_list)={len(group_list)}")
|
||||
if index >= len(group_list) :
|
||||
break
|
||||
|
||||
print(f"输出完成: {out_file}")
|
||||
|
||||
# 病害明显列表.xlsx
|
||||
headers = ['序号','路线编码','方向','桩号','路面类型','病害名称','程度','长度(m)',' 宽度(m)',' 面积(㎡)',' 横向位置','备注']
|
||||
data_list = []
|
||||
if summary_data:
|
||||
img_file_path = os.path.dirname(image_path)
|
||||
img_file_name = os.path.basename(image_path)
|
||||
road_data = get_road_info(road_dict, pile_dict, img_file_name)
|
||||
road_code, pile_no, road_type = detect_road_type_from_road_dict(road_dict, pile_dict, img_file_name)
|
||||
identify_width = road_data.get('识别宽度(米)', '3.6')
|
||||
up_or_down = road_data.get('方向(上行/下行)', '上行')
|
||||
excel_index = 1
|
||||
for data in summary_data:
|
||||
damage_data = data[2]
|
||||
for attr_name, attr_value in damage_data.items():
|
||||
excel_data = [excel_index, road_code, up_or_down, f"K000{data[0]}", ROAD_TYPE_EN_TO_CN.get(road_type), attr_name, '', attr_value[1]*cell_area, attr_value[2]*cell_area, attr_value[0], '', '']
|
||||
data_list.append(excel_data)
|
||||
|
||||
all_data = [headers] + data_list
|
||||
smb.write_to_excel_pandas(all_data, img_file_path + '/病害明显列表.xlsx')
|
||||
|
||||
# ---------------- 主函数 ----------------
|
||||
def process_zip(zip_path,pile_map_file,output_dir="output",cell_area=CELL_AREA,grid_width=GRID_WIDTH,grid_height=GRID_HEIGHT):
|
||||
@ -184,7 +469,7 @@ def process_zip(zip_path,pile_map_file,output_dir="output",cell_area=CELL_AREA,g
|
||||
for line in f:
|
||||
parts = line.strip().split("->")
|
||||
if len(parts)>=4:
|
||||
pile_dict[parts[3]]=parts[1] # filename -> 桩号
|
||||
pile_dict[parts[3]]=parts # filename -> 桩号
|
||||
|
||||
# 遍历图片
|
||||
summary_data = []
|
||||
@ -196,7 +481,7 @@ def process_zip(zip_path,pile_map_file,output_dir="output",cell_area=CELL_AREA,g
|
||||
if not os.path.exists(label_file):
|
||||
print(f"⚠️ 找不到标签: {label_file}")
|
||||
continue
|
||||
out_txt, class_cells, road_type = yoloseg_to_grid(image_path,label_file)
|
||||
out_txt, class_cells, road_type, = yoloseg_to_grid(image_path,label_file)
|
||||
# 写每张图独立 _grid.txt
|
||||
grid_txt_path = os.path.splitext(image_path)[0]+"_grid.txt"
|
||||
with open(grid_txt_path,'w',encoding='utf-8') as f:
|
||||
@ -207,9 +492,9 @@ def process_zip(zip_path,pile_map_file,output_dir="output",cell_area=CELL_AREA,g
|
||||
counts = {k:len(v)*cell_area for k,v in class_cells.items()}
|
||||
total_area = sum(counts.values())
|
||||
# 桩号
|
||||
pile_no = pile_dict.get(file,"未知")
|
||||
pile_no = pile_dict.get(file,"0+000")
|
||||
# 破损率 DR (%) = total_area / 总面积
|
||||
DR = total_area/ (total_area if total_area>0 else 1) *100 # 简化为100%或者0
|
||||
DR = total_area / (total_area if total_area > 0 else 1) * 100 # 简化为100%或者0
|
||||
summary_data.append((pile_no, DR, counts, road_type))
|
||||
|
||||
# 写桩号问题列表.txt
|
||||
@ -232,12 +517,99 @@ def process_zip(zip_path,pile_map_file,output_dir="output",cell_area=CELL_AREA,g
|
||||
f.write(','.join(row)+'\n')
|
||||
print(f"✅ 输出完成: {out_file}")
|
||||
|
||||
|
||||
# 路线编码 -> 路线信息
|
||||
def get_road_dict(local_dir):
|
||||
"""
|
||||
从本地目录读取Excel文件,构建路线字典
|
||||
|
||||
Args:
|
||||
local_dir: 本地目录路径
|
||||
|
||||
Returns:
|
||||
dict: 路线编码到路线信息的映射字典
|
||||
"""
|
||||
# 查找匹配的Excel文件
|
||||
pattern = os.path.join(local_dir, '每公里指标明细表*.xls')
|
||||
found_paths = glob.glob(pattern)
|
||||
|
||||
print(f"\n找到 {len(found_paths)} 个 '每公里指标明细表*.xls' 文件:")
|
||||
for i, path in enumerate(found_paths, 1):
|
||||
print(f"{i}. {path}")
|
||||
|
||||
road_dict = {}
|
||||
if len(found_paths) > 0:
|
||||
# 读取第一个匹配的Excel文件
|
||||
df = pd.read_excel(found_paths[0])
|
||||
|
||||
# 处理所有行(这里需要根据实际情况调整处理逻辑)
|
||||
for index, row in df.iterrows():
|
||||
data = row.to_dict()
|
||||
if pd.notna(data.get('线路编码', None)):
|
||||
up_or_down = 'A'
|
||||
if data.get('方向(上行/下行)', '') == '下行':
|
||||
up_or_down = 'B'
|
||||
|
||||
# 构建key,确保区划代码为整数
|
||||
area_code = data.get('区划代码', '')
|
||||
if pd.notna(area_code):
|
||||
area_code = str(int(float(area_code))) if str(area_code).replace('.', '').isdigit() else str(area_code)
|
||||
else:
|
||||
area_code = ''
|
||||
|
||||
key = f"{data['线路编码']}{area_code}{up_or_down}"
|
||||
|
||||
if key in road_dict:
|
||||
road_dict[key].append({'index': index, 'data': data})
|
||||
else:
|
||||
road_dict[key] = [{'index': index, 'data': data}]
|
||||
|
||||
return road_dict
|
||||
|
||||
# filename -> 桩号
|
||||
def get_pile_dict(local_dir):
|
||||
"""
|
||||
从本地目录读取fileindex.txt文件,构建桩号字典
|
||||
|
||||
Args:
|
||||
local_dir: 本地目录路径
|
||||
|
||||
Returns:
|
||||
dict: 文件名到桩号信息的映射字典
|
||||
"""
|
||||
# 查找fileindex.txt文件
|
||||
pattern = os.path.join(local_dir, 'fileindex.txt')
|
||||
found_paths = glob.glob(pattern)
|
||||
|
||||
print(f"\n找到 {len(found_paths)} 个 'fileindex.txt' 文件:")
|
||||
for i, path in enumerate(found_paths, 1):
|
||||
print(f"{i}. {path}")
|
||||
|
||||
pile_dict = {}
|
||||
if len(found_paths) > 0:
|
||||
# 读取第一个匹配的txt文件
|
||||
with open(found_paths[0], 'r', encoding='utf-8') as file:
|
||||
lines = file.readlines()
|
||||
|
||||
for i, line in enumerate(lines, 1):
|
||||
parts = line.strip().split("->")
|
||||
if len(parts) >= 4:
|
||||
pile_dict[parts[3]] = parts # filename -> 桩号
|
||||
|
||||
return pile_dict
|
||||
|
||||
# ---------------- 示例调用 ----------------
|
||||
if __name__=="__main__":
|
||||
# zip_path = "D:/devForBdzlWork/ai-train_platform/predict/inferenceResult.zip" # 输入 ZIP 文件
|
||||
# pile_map_file = "D:/devForBdzlWork/ai-train_platform/predict/pile_map.txt" # 图片名 -> 桩号
|
||||
# process_zip(zip_path=zip_path,pile_map_file=pile_map_file,output_dir="output")
|
||||
|
||||
output_dir = "D:/devForBdzlWork/ai-train_platform/predictions/1"
|
||||
pile_dict = smb.get_pile_dict("192.168.110.114/share_File/西南计算机", "administrator", "abc@1234")
|
||||
process_dir(pile_dict, output_dir)
|
||||
# output_dir = "D:/devForBdzlWork/ai-train_platform/predictions/7"
|
||||
# pile_dict = smb.get_pile_dict("192.168.110.114/share_File/西南计算机", "administrator", "abc@1234")
|
||||
# road_dict = smb.get_road_dict("192.168.110.114/share_File/西南计算机", "administrator", "abc@1234")
|
||||
# process_dir(road_dict, pile_dict, output_dir)
|
||||
|
||||
output_dir = "D:/devForBdzlWork/ai-train_platform/predictions/7"
|
||||
pile_dict = get_pile_dict(output_dir)
|
||||
road_dict = get_road_dict(output_dir)
|
||||
process_dir(road_dict, pile_dict, output_dir)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user