ai-train_platform/util/yolo2pix_new.py
2025-11-13 10:29:27 +08:00

244 lines
11 KiB
Python

import os
import zipfile
import shutil
import cv2
import numpy as np
from collections import defaultdict
import smb
# ---------------- 常量 ----------------
CELL_AREA = 0.0036 # 每格面积 (平方米)
GRID_WIDTH = 108 # 网格像素宽
GRID_HEIGHT = 102 # 网格像素高
COVER_RATIO = 0.01 # mask 覆盖比例阈值
# ---------------- 路面类别映射 ----------------
CLASS_MAP_ASPHALT = {
"龟裂":0,"块状裂缝":1,"纵向裂缝":2,"横向裂缝":3,"沉陷":4,"车辙":5,"波浪拥包":6,"坑槽":7,"松散":8,"泛油":9,"修补":10
}
CLASS_MAP_CEMENT = {
"破碎板":0,"裂缝":1,"板角断裂":2,"错台":3,"拱起":4,"边角剥落":5,"接缝料损坏":6,"坑洞":7,"唧泥":8,"露骨":9,"修补":10
}
CLASS_MAP_GRAVEL = {
"坑槽":0,"沉陷":1,"车辙":2,"波浪搓板":3
}
# ---------------- 工具函数 ----------------
def num_to_coord(num, cols, cell_w, cell_h):
n = num - 1
r, c = divmod(n, cols)
x1, y1 = c * cell_w, r * cell_h
x2, y2 = x1 + cell_w, y1 + cell_h
return x1, y1, x2, y2
def draw_grid_on_image(image_path, grid_cells, cell_size=(GRID_WIDTH, GRID_HEIGHT), save_path=None):
image = cv2.imread(image_path)
if image is None: return
h, w = image.shape[:2]
cell_w, cell_h = cell_size
cols = w // cell_w
overlay = image.copy()
for cname, nums in grid_cells.items():
color = (np.random.randint(64,255),np.random.randint(64,255),np.random.randint(64,255))
for num in nums:
x1,y1,x2,y2 = num_to_coord(num, cols, cell_w, cell_h)
cv2.rectangle(overlay,(x1,y1),(x2,y2),color,-1)
cv2.addWeighted(overlay,0.4,image,0.6,0,image)
for i in range(0, w, cell_w):
cv2.line(image,(i,0),(i,h),(100,100,100),1)
for j in range(0, h, cell_h):
cv2.line(image,(0,j),(w,j),(100,100,100),1)
if save_path: cv2.imwrite(save_path,image)
return image
def detect_road_type_from_content(label_file):
"""根据标签内容判断路面类型"""
try:
with open(label_file,'r',encoding='utf-8') as f:
content = f.read()
except:
return "gravel"
for kw in CLASS_MAP_ASPHALT.keys():
if kw in content: return "asphalt"
for kw in CLASS_MAP_CEMENT.keys():
if kw in content: return "cement"
for kw in CLASS_MAP_GRAVEL.keys():
if kw in content: return "gravel"
return "gravel"
def yoloseg_to_grid(image_path,label_file,cover_ratio=COVER_RATIO):
"""将YOLO-Seg标签转换成格子编号和类别"""
road_type = detect_road_type_from_content(label_file)
if road_type=="asphalt": class_map = CLASS_MAP_ASPHALT
elif road_type=="cement": class_map = CLASS_MAP_CEMENT
else: class_map = CLASS_MAP_GRAVEL
class_names = list(class_map.keys())
img = cv2.imread(image_path)
if img is None: return "", {}
h, w = img.shape[:2]
cols = max(1, w//GRID_WIDTH)
rows = max(1, h//GRID_HEIGHT)
result_lines = []
all_class_cells = {}
with open(label_file,'r',encoding='utf-8') as f:
for line in f:
parts = line.strip().split()
if len(parts)<5: continue
cls_id = int(parts[0])
coords = [float(x) for x in parts[1:]]
if len(coords)%2!=0: coords=coords[:-1]
if len(coords)<6: continue
poly = np.array(coords,dtype=np.float32).reshape(-1,2)
poly[:,0]*=w
poly[:,1]*=h
mask = np.zeros((h,w),dtype=np.uint8)
cv2.fillPoly(mask,[poly.astype(np.int32)],255)
covered_cells=[]
for r in range(rows):
for c in range(cols):
x1,y1 = c*GRID_WIDTH, r*GRID_HEIGHT
x2,y2 = min(w,x1+GRID_WIDTH), min(h,y1+GRID_HEIGHT)
region = mask[y1:y2, x1:x2]
if np.count_nonzero(region)/region.size>cover_ratio:
covered_cells.append(r*cols+c+1)
if not covered_cells: continue
cname = class_names[cls_id] if cls_id<len(class_names) else str(cls_id)
ids_str = '-'.join(map(str,sorted(covered_cells)))+'-'
result_lines.append(f"{cname} {ids_str}")
if cname not in all_class_cells: all_class_cells[cname]=set()
all_class_cells[cname].update(covered_cells)
return '\n'.join(result_lines), all_class_cells, road_type
def generate_header(road_type):
if road_type=="asphalt": return "起点桩号(km),识别宽度(m),破损率DR(%),龟裂,块状裂缝,纵向裂缝,横向裂缝,沉陷,车辙,波浪拥包,坑槽,松散,泛油,修补"
if road_type=="cement": return "起点桩号(km),识别宽度(m),破损率DR(%),破碎板,裂缝,板角断裂,错台,拱起,边角剥落,接缝料损坏,坑洞,唧泥,露骨,修补"
if road_type=="gravel": return "起点桩号(km),识别宽度(m),破损率DR(%),坑槽,沉陷,车辙,波浪搓板"
return ""
# ---------------- 主函数-共享目录 ----------------
def process_dir(pile_dict,dir="output",cell_area=CELL_AREA,grid_width=GRID_WIDTH,grid_height=GRID_HEIGHT):
os.makedirs(dir,exist_ok=True)
# 解压
# 读取桩号映射
# 遍历图片
summary_data = []
for root,_,files in os.walk(dir):
for file in files:
if file.lower().endswith((".jpg",".png",".jpeg",".bmp")) :
image_path = os.path.join(root,file)
label_file = os.path.splitext(image_path)[0]+".txt"
if not os.path.exists(label_file):
print(f"⚠️ 找不到标签: {label_file}")
continue
out_txt, class_cells, road_type = yoloseg_to_grid(image_path,label_file)
# 写每张图独立 _grid.txt
grid_txt_path = os.path.splitext(image_path)[0]+"_grid.txt"
with open(grid_txt_path,'w',encoding='utf-8') as f:
f.write(out_txt)
# 生成网格可视化
draw_grid_on_image(image_path,class_cells,save_path=os.path.splitext(image_path)[0]+"_grid.jpg")
# 统计各类面积
counts = {k:len(v)*cell_area for k,v in class_cells.items()}
total_area = sum(counts.values())
# 桩号
pile_no = pile_dict.get(file,"未知")
# 破损率 DR (%) = total_area / 总面积
DR = total_area/ (total_area if total_area>0 else 1) *100 # 简化为100%或者0
summary_data.append((pile_no, DR, counts, road_type))
# 写桩号问题列表.txt
if summary_data:
road_type = summary_data[0][3]
out_file = os.path.join(dir,"桩号问题列表.txt")
header = generate_header(road_type)
with open(out_file,'w',encoding='utf-8') as f:
f.write(header+'\n')
for pile_no,DR,counts,rt in summary_data:
row = [pile_no,"3.6",f"{DR:.2f}"]
if road_type=="asphalt":
keys = list(CLASS_MAP_ASPHALT.keys())
elif road_type=="cement":
keys = list(CLASS_MAP_CEMENT.keys())
else:
keys = list(CLASS_MAP_GRAVEL.keys())
for k in keys:
row.append(f"{counts.get(k,0):.2f}")
f.write(','.join(row)+'\n')
print(f"✅ 输出完成: {out_file}")
# ---------------- 主函数 ----------------
def process_zip(zip_path,pile_map_file,output_dir="output",cell_area=CELL_AREA,grid_width=GRID_WIDTH,grid_height=GRID_HEIGHT):
if not os.path.exists(zip_path):
raise FileNotFoundError(f"{zip_path} 不存在")
os.makedirs(output_dir,exist_ok=True)
# 解压
with zipfile.ZipFile(zip_path,'r') as zip_ref:
zip_ref.extractall(output_dir)
# 读取桩号映射
pile_dict = {}
with open(pile_map_file,'r',encoding='utf-8') as f:
for line in f:
parts = line.strip().split("->")
if len(parts)>=4:
pile_dict[parts[3]]=parts[1] # filename -> 桩号
# 遍历图片
summary_data = []
for root,_,files in os.walk(output_dir):
for file in files:
if file.lower().endswith((".jpg",".png",".jpeg",".bmp")) :
image_path = os.path.join(root,file)
label_file = os.path.splitext(image_path)[0]+".txt"
if not os.path.exists(label_file):
print(f"⚠️ 找不到标签: {label_file}")
continue
out_txt, class_cells, road_type = yoloseg_to_grid(image_path,label_file)
# 写每张图独立 _grid.txt
grid_txt_path = os.path.splitext(image_path)[0]+"_grid.txt"
with open(grid_txt_path,'w',encoding='utf-8') as f:
f.write(out_txt)
# 生成网格可视化
draw_grid_on_image(image_path,class_cells,save_path=os.path.splitext(image_path)[0]+"_grid.jpg")
# 统计各类面积
counts = {k:len(v)*cell_area for k,v in class_cells.items()}
total_area = sum(counts.values())
# 桩号
pile_no = pile_dict.get(file,"未知")
# 破损率 DR (%) = total_area / 总面积
DR = total_area/ (total_area if total_area>0 else 1) *100 # 简化为100%或者0
summary_data.append((pile_no, DR, counts, road_type))
# 写桩号问题列表.txt
if summary_data:
road_type = summary_data[0][3]
out_file = os.path.join(output_dir,"桩号问题列表.txt")
header = generate_header(road_type)
with open(out_file,'w',encoding='utf-8') as f:
f.write(header+'\n')
for pile_no,DR,counts,rt in summary_data:
row = [pile_no,"3.6",f"{DR:.2f}"]
if road_type=="asphalt":
keys = list(CLASS_MAP_ASPHALT.keys())
elif road_type=="cement":
keys = list(CLASS_MAP_CEMENT.keys())
else:
keys = list(CLASS_MAP_GRAVEL.keys())
for k in keys:
row.append(f"{counts.get(k,0):.2f}")
f.write(','.join(row)+'\n')
print(f"✅ 输出完成: {out_file}")
# ---------------- 示例调用 ----------------
if __name__=="__main__":
# zip_path = "D:/devForBdzlWork/ai-train_platform/predict/inferenceResult.zip" # 输入 ZIP 文件
# pile_map_file = "D:/devForBdzlWork/ai-train_platform/predict/pile_map.txt" # 图片名 -> 桩号
# process_zip(zip_path=zip_path,pile_map_file=pile_map_file,output_dir="output")
output_dir = "D:/devForBdzlWork/ai-train_platform/predictions/1"
pile_dict = smb.get_pile_dict("192.168.110.114/share_File/西南计算机", "administrator", "abc@1234")
process_dir(pile_dict, output_dir)