ai_project_v1/CropLand_CD_module/change_detection.py

364 lines
16 KiB
Python
Raw Normal View History

# ChangeDetection.py
import os
import torch
import numpy as np
from tqdm import tqdm
import itertools
import torch.optim as optim
from torch.utils.data import DataLoader
from model.network import CDNet
from data_utils import DynamicPatchDataset, LoadDatasetFromCoords, TestDatasetFromCoords, calMetric_iou, get_transform, \
TestDatasetFromPic
from loss.losses import cross_entropy
from PIL import Image
from cood_csv import PatchIndexer, PredictionAggregator
import torchvision.transforms as transforms
class ChangeDetection:
def __init__(self, args):
# 参数完整性检查
required_args = ['gpu_id', 'img_size', 'lr']
for arg in required_args:
if not hasattr(args, arg):
raise ValueError(f"Missing required argument: {arg}")
self.args = args
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.best_iou = 0.0
# Initialize model
self.model = CDNet(img_size=self.args.img_size).to(self.device, dtype=torch.float)
if torch.cuda.device_count() > 1:
print(f"Using {torch.cuda.device_count()} GPUs!")
self.model = torch.nn.DataParallel(self.model, device_ids=range(torch.cuda.device_count()))
# Loss and optimizer
self.criterion = cross_entropy().to(self.device, dtype=torch.float)
self.optimizer = optim.Adam(itertools.chain(self.model.parameters()),
lr=self.args.lr, betas=(0.9, 0.999))
def train(self):
print("Starting training...")
# os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
# 自动推断 save_dir = 'val/', 自动保存为 'coords.csv'
# 1训练scv文件生成
indexer_train = PatchIndexer(
img_dir=self.args.hr1_train,
patch_size=256,
stride=256
)
indexer_train.index_all()
# 1验证scv文件生成
indexer_val = PatchIndexer(
img_dir=self.args.hr1_val,
patch_size=256,
stride=256
)
indexer_val.index_all()
# 调用相对路径
# 1获取上一级文件路径
parent_train_cood = os.path.dirname(self.args.hr1_train)
train_cood = os.path.join(parent_train_cood, "coords.csv")
parent_val_cood = os.path.dirname(self.args.hr1_val)
val_cood = os.path.join(parent_val_cood, "coords.csv")
train_set = DynamicPatchDataset(coords_csv=train_cood, img1_dir=self.args.hr1_train,
img2_dir=self.args.hr2_train, label_dir=self.args.lab_train, crop=True,
augment=True, angle=30, num_classes=2)
val_set = LoadDatasetFromCoords(coords_csv=val_cood, hr1_dir=self.args.hr1_val, hr2_dir=self.args.hr2_val,
label_dir=self.args.lab_val)
# train_set = DynamicPatchDataset(self.args.hr1_train, self.args.hr2_train, self.args.lab_train, crop=False)
# val_set = LoadDatasetFromFolder(self.args, self.args.hr1_val, self.args.hr2_val, self.args.lab_val)
train_loader = DataLoader(train_set, num_workers=self.args.num_workers,
batch_size=self.args.batchsize, shuffle=True)
val_loader = DataLoader(val_set, num_workers=self.args.num_workers,
batch_size=self.args.val_batchsize, shuffle=False)
for epoch in range(1, self.args.num_epochs + 1):
self.model.train()
train_bar = tqdm(train_loader, desc=f"Epoch [{epoch}/{self.args.num_epochs}]")
for hr_img1, hr_img2, label in train_bar:
hr_img1 = hr_img1.to(self.device, dtype=torch.float)
hr_img2 = hr_img2.to(self.device, dtype=torch.float)
label = label.to(self.device, dtype=torch.float)
label = torch.argmax(label, 1).unsqueeze(1).float()
self.optimizer.zero_grad()
out1, out2, out3 = self.model(hr_img1, hr_img2)
cd_loss = (self.criterion(out1, label) +
self.criterion(out2, label) +
self.criterion(out3, label))
cd_loss.backward()
self.optimizer.step()
train_bar.set_postfix(loss=cd_loss.item())
# Evaluate only on best epoch (IoU improved)
val_iou = self.validate(val_loader)
print(f"Validation IoU: {val_iou:.4f}")
if val_iou > self.best_iou:
self.best_iou = val_iou
self._save_best_model()
print(f"New best model saved with IoU: {val_iou:.4f}")
def validate(self, val_loader):
self.model.eval()
inter, union = 0, 0
with torch.no_grad():
for hr_img1, hr_img2, label in tqdm(val_loader, desc='Validating'):
hr_img1 = hr_img1.to(self.device, dtype=torch.float)
hr_img2 = hr_img2.to(self.device, dtype=torch.float)
label = label.to(self.device, dtype=torch.float)
label = torch.argmax(label, 1).unsqueeze(1).float()
output, _, _ = self.model(hr_img1, hr_img2)
pred = torch.argmax(output, 1).unsqueeze(1).float()
gt = (label > 0).float()
prob = (pred > 0).float()
gt_np = np.squeeze(gt.cpu().detach().numpy())
pred_np = np.squeeze(prob.cpu().detach().numpy())
intr, unn = calMetric_iou(gt_np, pred_np)
inter += intr
union += unn
iou = inter / union if union != 0 else 0
return iou
def _save_best_model(self):
if not os.path.exists(self.args.model_dir):
os.makedirs(self.args.model_dir)
# Remove any existing .pth files
for f in os.listdir(self.args.model_dir):
if f.endswith('.pth'):
os.remove(os.path.join(self.args.model_dir, f))
save_path = os.path.join(self.args.model_dir, 'best_model.pth')
torch.save(self.model.state_dict(), save_path)
print(f"Best model saved to {save_path}")
def load_model(self, model_path):
self.model.load_state_dict(torch.load(model_path, map_location=self.device))
self.model.eval()
print(f"Loaded model from {model_path}")
def predict(self):
print(f"结果将保存到目录: {self.args.save_dir}")
print("Starting prediction...")
indexer_test = PatchIndexer(
img_dir=self.args.path_img1,
patch_size=256,
stride=256
)
indexer_test.index_all()
# 调用scv相对路径
parent_test_cood = os.path.dirname(self.args.path_img1)
test_cood = os.path.join(parent_test_cood, "coords.csv")
if not os.path.exists(self.args.save_dir):
os.makedirs(self.args.save_dir)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5] * 3, std=[0.5] * 3)
])
img1Url = r"D:\project\2025-7-10_data+model\val\image1\1.png"
img2Url = r"D:\project\2025-7-10_data+model\val\image2\1.png"
test_set = TestDatasetFromPic(img1Url, img2Url)
# test_set = TestDatasetFromCoords(coords_csv=test_cood, hr1_dir=self.args.path_img1, hr2_dir=self.args.path_img2,
# label_dir=None, transform=transform)
# test_set = TestDatasetFromFolder(self.args, self.args.path_img1,
# self.args.path_img2, self.args.path_lab)
test_loader = DataLoader(test_set, num_workers=24,
batch_size=self.args.batch_size, shuffle=False)
self.model.eval()
aggregator = PredictionAggregator(img_dir=self.args.path_img1)
# aggregator=PredictionAggregator()
test_bar = tqdm(test_loader)
inter, union = 0, 0
for img1, img2, label, patch_name, fname_list, x_list, y_list, h_list, w_list in test_bar:
img1 = img1.to(self.device)
img2 = img2.to(self.device)
label = label.to(self.device)
with torch.no_grad():
output = self.model(img1, img2)
if isinstance(output, tuple): # ← 检查是否是 tuple
output = output[0]
pred = torch.argmax(output, 1).unsqueeze(1).float()
# label = torch.argmax(label, 1).unsqueeze(1).float()
label = label.float()
for i in range(img1.size(0)):
# prob = pred[i].cpu().numpy()
# gt_value = label[i].cpu().numpy()
patch = pred[i][0].cpu().numpy().astype(np.uint8)
gt_value = label[i][0].cpu().numpy().astype(np.uint8)
# intr, unn = calMetric_iou(gt_value.squeeze(), prob.squeeze())
intr, unn = calMetric_iou(gt_value, patch)
inter += intr
union += unn
fname = fname_list[i]
x, y = x_list[i].item(), y_list[i].item()
# patch = pred[i][0].cpu().numpy().astype(np.uint8)
h, w = h_list[i].item(), w_list[i].item()
aggregator.add_patch(fname, x, y, patch, h, w)
# aggregator.add_patch(fname, x, y, patch)
test_bar.set_description('IoU: %.4f' % (inter / union if union > 0 else 0))
aggregator.save_all(self.args.save_dir)
iou = inter / union if union != 0 else 0
print(f"Test IoU: {iou:.4f}")
def predict_from_imgurl(self,img1Url,img2Url,save_dir):
print(f"结果将保存到目录: {self.args.save_dir}")
print("Starting prediction...")
indexer_test = PatchIndexer(
img_dir=self.args.path_img1,
patch_size=256,
stride=256
)
indexer_test.index_all()
# 调用scv相对路径
parent_test_cood = os.path.dirname(self.args.path_img1)
# test_cood = os.path.join(parent_test_cood, "coords.csv")
if not os.path.exists(self.args.save_dir):
os.makedirs(self.args.save_dir)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5] * 3, std=[0.5] * 3)
])
img1Url = r"D:\project\2025-7-10_data+model\val\image1\1.png"
img2Url = r"D:\project\2025-7-10_data+model\val\image2\1.png"
test_set = TestDatasetFromPic(img1Url, img2Url, None, transform)
# test_set = TestDatasetFromCoords(coords_csv=test_cood, hr1_dir=self.args.path_img1, hr2_dir=self.args.path_img2,
# label_dir=None, transform=transform)
# test_set = TestDatasetFromFolder(self.args, self.args.path_img1,
# self.args.path_img2, self.args.path_lab)
test_loader = DataLoader(test_set, num_workers=24,
batch_size=self.args.batch_size, shuffle=False)
self.model.eval()
aggregator = PredictionAggregator(img_dir=self.args.path_img1)
# aggregator=PredictionAggregator()
test_bar = tqdm(test_loader)
inter, union = 0, 0
for img1, img2, label, patch_name, fname_list, x_list, y_list, h_list, w_list in test_bar:
img1 = img1.to(self.device)
img2 = img2.to(self.device)
label = label.to(self.device)
with torch.no_grad():
output = self.model(img1, img2)
if isinstance(output, tuple): # ← 检查是否是 tuple
output = output[0]
pred = torch.argmax(output, 1).unsqueeze(1).float()
# label = torch.argmax(label, 1).unsqueeze(1).float()
label = label.float()
for i in range(img1.size(0)):
# prob = pred[i].cpu().numpy()
# gt_value = label[i].cpu().numpy()
patch = pred[i][0].cpu().numpy().astype(np.uint8)
gt_value = label[i][0].cpu().numpy().astype(np.uint8)
# intr, unn = calMetric_iou(gt_value.squeeze(), prob.squeeze())
intr, unn = calMetric_iou(gt_value, patch)
inter += intr
union += unn
fname = fname_list[i]
x, y = x_list[i].item(), y_list[i].item()
# patch = pred[i][0].cpu().numpy().astype(np.uint8)
h, w = h_list[i].item(), w_list[i].item()
aggregator.add_patch(fname, x, y, patch, h, w)
# aggregator.add_patch(fname, x, y, patch)
test_bar.set_description('IoU: %.4f' % (inter / union if union > 0 else 0))
out_save_path=aggregator.save_all(save_dir)
print(f"out_save_pathout_save_path {out_save_path}")
iou = inter / union if union != 0 else 0
print(f"Test IoU: {iou:.4f}")
return out_save_path
# for image1, image2, label, image_names in tqdm(test_loader, desc='Testing'):
# image1 = image1.to(self.device, dtype=torch.float)
# image2 = image2.to(self.device, dtype=torch.float)
# label = label.to(self.device, dtype=torch.float)
# output, _, _ = self.model(image1, image2)
# pred = torch.argmax(output, 1).unsqueeze(1)
# label = torch.argmax(label, 1).unsqueeze(1)
# for i in range(pred.size(0)):
# gt_value = (label[i] > 0).float()
# prob = (pred[i] > 0).float()
# gt_np = np.squeeze(gt_value.cpu().detach().numpy())
# prob_np = np.squeeze(prob.cpu().detach().numpy())
# intr, unn = calMetric_iou(gt_np, prob_np)
# inter += intr
# union += unn
# binary_result = np.where(prob_np > 0.5, 255, 0).astype('uint8') # 将预测值转换为0和255
# result = Image.fromarray(binary_result) # 使用转换后的二值图像
# result.save(os.path.join(self.args.save_dir, image_names[i]))
# iou = inter / union if union != 0 else 0
# print(f"Test IoU: {iou:.4f}")
def predict_without_label(self, img1, img2):
"""
直接对输入的 image1 image2 进行预测
Args:
image1 (torch.Tensor np.ndarray): 输入图像1需与模型输入兼容
image2 (torch.Tensor np.ndarray): 输入图像2需与模型输入兼容
Returns:
torch.Tensor: 模型的输出未经过 argmax 处理
torch.Tensor: 二值化后的预测结果0 255
"""
print("Starting prediction...")
# if not os.path.exists(self.args.save_dir):
# os.makedirs(self.args.save_dir)
transform = get_transform(convert=True, normalize=True)
# image1 = transform(img1.convert('RGB'))
# image2 = transform(img2.convert('RGB'))
image1 = transform(img1.convert('RGB')).to(self.device) # 移动到设备
image2 = transform(img2.convert('RGB')).to(self.device) # 移动到设备
# # 确保输入是 Tensor并移动到指定设备
# if isinstance(image1, np.ndarray):
# image1 = torch.from_numpy(image1).to(self.device, dtype=torch.float)
# if isinstance(image2, np.ndarray):
# image2 = torch.from_numpy(image2).to(self.device, dtype=torch.float)
# 模型推理
self.model.eval()
with torch.no_grad():
output, _, _ = self.model(image1.unsqueeze(0), image2.unsqueeze(0)) # 添加 batch 维度
pred = torch.argmax(output, 1).squeeze(0) # 移除 batch 维度
prob_np = pred.cpu().detach().numpy()
# 二值化
binary_result = np.where(prob_np > 0.5, 255, 0).astype('uint8')
return output, binary_result