conda create -n aienv2 python=3.10 激活环境 conda create -n yolo_trt_10 python=3.10 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ --override-channels 最后安装tensorrt依赖的whl包,不然gdal 安装不上 conda activate aienv 安装本地环境所需的包 //cuda 版本需要根据本地硬件做适配 同时安装ultralyticsopencv,可以解决opencv 无法读取rtmp的问题 conda install -c pytorch -c nvidia -c conda-forge -c defaults pytorch torchvision pytorch-cuda=12.4 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ --override-channels ultralytics opencv conda install -c conda-forge sanic minio paho-mqtt sanic-cors -y conda remove --name aimmseg --all 删除环境 # 执行清理后 conda clean --all # 20250708 最新最新环境安装命令如下,既要适配sanic的3.9及以上,也要适配mmseg的torch版本 conda create -n aimmseg python=3.10 windows pip install mmcv==2.0.0 -f https://download.openmmlab.com/mmcv/dist/cu118/torch2.0/index.html -i https://mirrors.aliyun.com/pypi/simple/ conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.8 -c pytorch -c nvidia 试一下torch2.0.1 conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.8 -c pytorch -c nvidia mamba install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.8 -c pytorch -c nvidia linux pip install mmcv==2.0.0 -f https://download.openmmlab.com/mmcv/dist/cu118/torch2.0/index.html conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.8 -c pytorch -c nvidia pip install av -i https://mirrors.aliyun.com/pypi/simple/ pip install -U openmim -i https://mirrors.aliyun.com/pypi/simple/ pip install "mmsegmentation>=1.0.0" -i https://mirrors.aliyun.com/pypi/simple/ pip install ftfy -i https://mirrors.aliyun.com/pypi/simple/ pip install opencv-python -i https://mirrors.aliyun.com/pypi/simple/ pip install rasterio einops imageio albumentations opencv-contrib-python -i https://mirrors.aliyun.com/pypi/simple/ 版本问题,需要保证numpy低于 2.0 python -c "import numpy; print(numpy.__version__)" #torch版本低,需要降级numpy pip uninstall numpy -y pip install "numpy<2.0" # 安装 1.26.4 或更早版本 pip install numpy==1.24.4 pip install --no-deps albumentations==2.0.8 -i https://pypi.tuna.tsinghua.edu.cn/simple mmsegmentation