import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, repeat from ResNet import * from timm.models.layers import DropPath, to_2tuple, trunc_normal_ class ConvBNReLU(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, norm_layer=nn.BatchNorm2d, groups=1, bias=False): super(ConvBNReLU, self).__init__( nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias, dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2, groups=groups), norm_layer(out_channels), nn.ReLU6() ) class ConvBN(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, norm_layer=nn.BatchNorm2d, bias=False): super(ConvBN, self).__init__( nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias, dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2), norm_layer(out_channels) ) class Conv(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, bias=False): super(Conv, self).__init__( nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias, dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2) ) class SeparableConvBNReLU(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, norm_layer=nn.BatchNorm2d): super(SeparableConvBNReLU, self).__init__( nn.Conv2d(in_channels, in_channels, kernel_size, stride=stride, dilation=dilation, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2, groups=in_channels, bias=False), norm_layer(in_channels), nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False), norm_layer(out_channels), nn.ReLU6() ) class SeparableConvBN(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, norm_layer=nn.BatchNorm2d): super(SeparableConvBN, self).__init__( nn.Conv2d(in_channels, in_channels, kernel_size, stride=stride, dilation=dilation, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2, groups=in_channels, bias=False), nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False), norm_layer(out_channels), ) class SeparableConv(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1): super(SeparableConv, self).__init__( nn.Conv2d(in_channels, in_channels, kernel_size, stride=stride, dilation=dilation, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2, groups=in_channels, bias=False), nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False) ) class E_FFN(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, ksize=5, act_layer=nn.ReLU6, drop=0.): super(E_FFN, self).__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = ConvBNReLU(in_channels=in_features, out_channels=hidden_features, kernel_size=1) self.conv1 = ConvBNReLU(in_channels=hidden_features, out_channels=hidden_features, kernel_size=ksize, groups=hidden_features) self.conv2 = ConvBNReLU(in_channels=hidden_features, out_channels=hidden_features, kernel_size=3, groups=hidden_features) self.fc2 = ConvBN(in_channels=hidden_features, out_channels=out_features, kernel_size=1) self.act = act_layer() self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x1 = self.conv1(x) x2 = self.conv2(x) x = self.fc2(x1 + x2) x = self.act(x) return x class MutilScal(nn.Module): def __init__(self, dim=512, fc_ratio=4, dilation=[3, 5, 7], pool_ratio=16): super(MutilScal, self).__init__() self.conv0_1 = nn.Conv2d(dim, dim//fc_ratio, 1) self.bn0_1 = nn.BatchNorm2d(dim//fc_ratio) self.conv0_2 = nn.Conv2d(dim//fc_ratio, dim//fc_ratio, 3, padding=dilation[-3], dilation=dilation[-3], groups=dim //fc_ratio) self.bn0_2 = nn.BatchNorm2d(dim // fc_ratio) self.conv0_3 = nn.Conv2d(dim//fc_ratio, dim, 1) self.bn0_3 = nn.BatchNorm2d(dim) self.conv1_2 = nn.Conv2d(dim//fc_ratio, dim//fc_ratio, 3, padding=dilation[-2], dilation=dilation[-2], groups=dim // fc_ratio) self.bn1_2 = nn.BatchNorm2d(dim//fc_ratio) self.conv1_3 = nn.Conv2d(dim//fc_ratio, dim, 1) self.bn1_3 = nn.BatchNorm2d(dim) self.conv2_2 = nn.Conv2d(dim//fc_ratio, dim//fc_ratio, 3, padding=dilation[-1], dilation=dilation[-1], groups=dim//fc_ratio) self.bn2_2 = nn.BatchNorm2d(dim//fc_ratio) self.conv2_3 = nn.Conv2d(dim//fc_ratio, dim, 1) self.bn2_3 = nn.BatchNorm2d(dim) self.conv3 = nn.Conv2d(dim, dim, 1) self.bn3 = nn.BatchNorm2d(dim) self.relu = nn.ReLU6() self.Avg = nn.AdaptiveAvgPool2d(pool_ratio) def forward(self, x): u = x.clone() attn0_1 = self.relu(self.bn0_1(self.conv0_1(x))) attn0_2 = self.relu(self.bn0_2(self.conv0_2(attn0_1))) attn0_3 = self.relu(self.bn0_3(self.conv0_3(attn0_2))) attn1_2 = self.relu(self.bn1_2(self.conv1_2(attn0_1))) attn1_3 = self.relu(self.bn1_3(self.conv1_3(attn1_2))) attn2_2 = self.relu(self.bn2_2(self.conv2_2(attn0_1))) attn2_3 = self.relu(self.bn2_3(self.conv2_3(attn2_2))) attn = attn0_3 + attn1_3 + attn2_3 attn = self.relu(self.bn3(self.conv3(attn))) attn = attn * u pool = self.Avg(attn) return pool class Mutilscal_MHSA(nn.Module): def __init__(self, dim, num_heads, atten_drop = 0., proj_drop = 0., dilation = [3, 5, 7], fc_ratio=4, pool_ratio=16): super(Mutilscal_MHSA, self).__init__() assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." self.dim = dim self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.atten_drop = nn.Dropout(atten_drop) self.proj_drop = nn.Dropout(proj_drop) self.MSC = MutilScal(dim=dim, fc_ratio=fc_ratio, dilation=dilation, pool_ratio=pool_ratio) self.avgpool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Conv2d(in_channels=dim, out_channels=dim//fc_ratio, kernel_size=1), nn.ReLU6(), nn.Conv2d(in_channels=dim//fc_ratio, out_channels=dim, kernel_size=1), nn.Sigmoid() ) self.kv = Conv(dim, 2 * dim, 1) def forward(self, x): u = x.clone() B, C, H, W = x.shape kv = self.MSC(x) kv = self.kv(kv) B1, C1, H1, W1 = kv.shape q = rearrange(x, 'b (h d) (hh) (ww) -> (b) h (hh ww) d', h=self.num_heads, d=C // self.num_heads, hh=H, ww=W) k, v = rearrange(kv, 'b (kv h d) (hh) (ww) -> kv (b) h (hh ww) d', h=self.num_heads, d=C // self.num_heads, hh=H1, ww=W1, kv=2) dots = (q @ k.transpose(-2, -1)) * self.scale attn = dots.softmax(dim=-1) attn = self.atten_drop(attn) attn = attn @ v attn = rearrange(attn, '(b) h (hh ww) d -> b (h d) (hh) (ww)', h=self.num_heads, d=C // self.num_heads, hh=H, ww=W) c_attn = self.avgpool(x) c_attn = self.fc(c_attn) c_attn = c_attn * u return attn + c_attn class Block(nn.Module): def __init__(self, dim=512, num_heads=16, mlp_ratio=4, pool_ratio=16, drop=0., dilation=[3, 5, 7], drop_path=0., act_layer=nn.ReLU6, norm_layer=nn.BatchNorm2d): super().__init__() self.norm1 = norm_layer(dim) self.attn = Mutilscal_MHSA(dim, num_heads=num_heads, atten_drop=drop, proj_drop=drop, dilation=dilation, pool_ratio=pool_ratio, fc_ratio=mlp_ratio) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() mlp_hidden_dim = int(dim // mlp_ratio) self.mlp = E_FFN(in_features=dim, hidden_features=mlp_hidden_dim, out_features=dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.drop_path(self.norm1(self.attn(x))) x = x + self.drop_path(self.mlp(x)) return x class Fusion(nn.Module): def __init__(self, dim, eps=1e-8): super(Fusion, self).__init__() self.weights = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) self.eps = eps self.post_conv = SeparableConvBNReLU(dim, dim, 5) def forward(self, x, res): x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False) weights = nn.ReLU6()(self.weights) fuse_weights = weights / (torch.sum(weights, dim=0) + self.eps) x = fuse_weights[0] * res + fuse_weights[1] * x x = self.post_conv(x) return x class MAF(nn.Module): def __init__(self, dim, fc_ratio, dilation=[3, 5, 7], dropout=0., num_classes=6): super(MAF, self).__init__() self.conv0 = nn.Conv2d(dim, dim//fc_ratio, 1) self.bn0 = nn.BatchNorm2d(dim//fc_ratio) self.conv1_1 = nn.Conv2d(dim//fc_ratio, dim//fc_ratio, 3, padding=dilation[-3], dilation=dilation[-3], groups=dim//fc_ratio) self.bn1_1 = nn.BatchNorm2d(dim//fc_ratio) self.conv1_2 = nn.Conv2d(dim//fc_ratio, dim, 1) self.bn1_2 = nn.BatchNorm2d(dim) self.conv2_1 = nn.Conv2d(dim//fc_ratio, dim//fc_ratio, 3, padding=dilation[-2], dilation=dilation[-2], groups=dim//fc_ratio) self.bn2_1 = nn.BatchNorm2d(dim//fc_ratio) self.conv2_2 = nn.Conv2d(dim//fc_ratio, dim, 1) self.bn2_2 = nn.BatchNorm2d(dim) self.conv3_1 = nn.Conv2d(dim//fc_ratio, dim//fc_ratio, 3, padding=dilation[-1], dilation=dilation[-1], groups=dim//fc_ratio) self.bn3_1 = nn.BatchNorm2d(dim//fc_ratio) self.conv3_2 = nn.Conv2d(dim//fc_ratio, dim, 1) self.bn3_2 = nn.BatchNorm2d(dim) self.relu = nn.ReLU6() self.conv4 = nn.Conv2d(dim, dim, 1) self.bn4 = nn.BatchNorm2d(dim) self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Conv2d(dim, dim//fc_ratio, 1, 1), nn.ReLU6(), nn.Conv2d(dim//fc_ratio, dim, 1, 1), nn.Sigmoid() ) self.s_conv = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=5, padding=2) self.sigmoid = nn.Sigmoid() self.head = nn.Sequential(SeparableConvBNReLU(dim, dim, kernel_size=3), nn.Dropout2d(p=dropout, inplace=True), Conv(256, num_classes, kernel_size=1)) def forward(self, x): u = x.clone() attn1_0 = self.relu(self.bn0(self.conv0(x))) attn1_1 = self.relu(self.bn1_1(self.conv1_1(attn1_0))) attn1_1 = self.relu(self.bn1_2(self.conv1_2(attn1_1))) attn1_2 = self.relu(self.bn2_1(self.conv2_1(attn1_0))) attn1_2 = self.relu(self.bn2_2(self.conv2_2(attn1_2))) attn1_3 = self.relu(self.bn3_1(self.conv3_1(attn1_0))) attn1_3 = self.relu(self.bn3_2(self.conv3_2(attn1_3))) c_attn = self.avg_pool(x) c_attn = self.fc(c_attn) c_attn = u * c_attn s_max_out, _ = torch.max(x, dim=1, keepdim=True) s_avg_out = torch.mean(x, dim=1, keepdim=True) s_attn = torch.cat((s_avg_out, s_max_out), dim=1) s_attn = self.s_conv(s_attn) s_attn = self.sigmoid(s_attn) s_attn = u * s_attn attn = attn1_1 + attn1_2 + attn1_3 attn = self.relu(self.bn4(self.conv4(attn))) attn = u * attn out = self.head(attn + c_attn + s_attn) return out class Decoder(nn.Module): def __init__(self, encode_channels=[256, 512, 1024, 2048], decode_channels=512, dilation = [[1, 3, 5], [3, 5, 7], [5, 7, 9], [7, 9, 11]], fc_ratio=4, dropout=0.1, num_classes=6): super(Decoder, self).__init__() self.Conv1 = ConvBNReLU(encode_channels[-1], decode_channels, 1) self.Conv2 = ConvBNReLU(encode_channels[-2], decode_channels, 1) self.b4 = Block(dim=decode_channels, num_heads=16, mlp_ratio=4, pool_ratio=16, dilation=dilation[0]) self.p3 = Fusion(decode_channels) self.b3 = Block(dim=decode_channels, num_heads=16, mlp_ratio=4, pool_ratio=16, dilation=dilation[1]) self.p2 = Fusion(decode_channels) self.b2 = Block(dim=decode_channels, num_heads=16, mlp_ratio=4, pool_ratio=16, dilation=dilation[2]) self.Conv3 = ConvBN(encode_channels[-3], encode_channels[-4], 1) self.p1 = Fusion(encode_channels[-4]) self.seg_head = MAF(encode_channels[-4], fc_ratio=fc_ratio, dilation=dilation[3], dropout=dropout, num_classes=num_classes) self.init_weight() def forward(self, res1, res2, res3, res4, h, w): res4 = self.Conv1(res4) res3 = self.Conv2(res3) x = self.b4(res4) x = self.p3(x, res3) x = self.b3(x) x = self.p2(x, res2) x = self.b2(x) x = self.Conv3(x) x = self.p1(x, res1) x = self.seg_head(x) x = F.interpolate(x, size=(h, w), mode='bilinear', align_corners=False) return x def init_weight(self): for m in self.children(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, a=1) if m.bias is not None: nn.init.constant_(m.bias, 0) class CMTFNet(nn.Module): def __init__(self, encode_channels=[256, 512, 1024, 2048], decode_channels=512, dropout=0.1, num_classes=7, backbone=ResNet50 ): super().__init__() self.backbone = backbone() self.decoder = Decoder(encode_channels, decode_channels, dropout=dropout, num_classes=num_classes) def forward(self, x): h, w = x.size()[-2:] res1, res2, res3, res4 = self.backbone(x) x = self.decoder(res1, res2, res3, res4, h, w) return x if __name__ == '__main__': from thop import profile x = torch.randn(1, 3, 512, 512).to('cuda:0') net = CMTFNet().to('cuda:0') out = net(x) # print(net) print(out.shape) # flops, params = profile(net, (x,)) # print('flops: ', flops, 'params: ', params)