import torch import torch.nn as nn import torch.nn.functional as F def to_2tuple(x): return tuple([x] * 2) class Identity(nn.Module): def __init__(self): super().__init__() def forward(self, input): return input class PathchEmbed(nn.Module): def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size[0], stride=patch_size[0]) def forward(self, x): B, C, H, W = x.shape x = self.proj(x).flatten(2).permute(0, 2, 1) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] attn = (q.matmul(k.permute(0, 1, 3, 2))) * self.scale attn = F.softmax(attn, dim=1) attn = self.attn_drop(attn) x = (attn.matmul(v)).permute(0, 2, 1, 3).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None,act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features,hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def drop_path(x, drop_prob: float = 0., training: bool = False): if drop_prob == 0. or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class BasicBlock(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer='nn.LayerNorm', epsilon=1e-5): super().__init__() self.norm1 = eval(norm_layer)(dim, eps=epsilon) self.attn = Attention(dim=dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity() self.norm2 = eval(norm_layer)(dim, eps=epsilon) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x def truncated_normal_(tensor,mean=0,std=0.09): with torch.no_grad(): size = tensor.shape tmp = tensor.new_empty(size+(4,)).normal_() valid = (tmp < 2) & (tmp > -2) ind = valid.max(-1, keepdim=True)[1] tensor.data.copy_(tmp.gather(-1, ind).squeeze(-1)) tensor.data.mul_(std).add_(mean) return tensor class VisionTransformer(nn.Module): def __init__(self, img_size=224, patch_size=16, in_chans=3, class_dim=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer='nn.LayerNorm', epsilon=1e-5, **args): super().__init__() self.class_dim = class_dim self.patch_embed = PathchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans,embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x for x in torch.linspace(0, drop_path_rate, depth)] self.blocks = nn.ModuleList([ BasicBlock( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, epsilon=epsilon) for i in range(depth) ]) self.norm = eval(norm_layer)(embed_dim, eps=epsilon) self.head = nn.Linear(embed_dim, class_dim) if class_dim > 0 else Identity() truncated_normal_(tensor=self.pos_embed) truncated_normal_(tensor=self.cls_token) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): truncated_normal_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1) def forward_features(self, x): B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat([cls_tokens, x], axis=1) x = x + self.pos_embed x = self.pos_drop(x) for blk in self.blocks: x = blk(x) x = self.norm(x) return x[:,0] def forward(self, x): x = self.forward_features(x) x = self.head(x) return x