crop_size = ( 1920, 1920, ) data_preprocessor = dict( bgr_to_rgb=True, mean=[ 123.675, 116.28, 103.53, ], pad_val=0, seg_pad_val=255, size=( 1920, 1920, ), std=[ 58.395, 57.12, 57.375, ], type='SegDataPreProcessor') data_root = '/media/data2/ZJB/MPNet/data_root/UAV' dataset_type = 'UVA_dataset' default_hooks = dict( checkpoint=dict( by_epoch=False, interval=2000, max_keep_ckpts=3, save_best='mIoU', type='CheckpointHook'), logger=dict(interval=50, log_metric_by_epoch=False, type='LoggerHook'), param_scheduler=dict(type='ParamSchedulerHook'), sampler_seed=dict(type='DistSamplerSeedHook'), timer=dict(type='IterTimerHook'), visualization=dict(type='SegVisualizationHook')) default_scope = 'mmseg' env_cfg = dict( cudnn_benchmark=True, dist_cfg=dict(backend='nccl'), mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0)) img_ratios = [ 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, ] launcher = 'none' load_from = None log_level = 'INFO' log_processor = dict(by_epoch=False) model = dict( auxiliary_head=dict( align_corners=False, channels=48, concat_input=False, dropout_ratio=0.1, in_channels=8, in_index=0, loss_decode=[ dict(loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False), dict(loss_weight=0.4, type='DiceLoss', use_sigmoid=True), ], norm_cfg=dict(requires_grad=True, type='SyncBN'), num_classes=7, num_convs=1, type='DirectHead'), backbone=dict( backbone_name='swsl_resnet18', decode_channels=64, dropout=0.1, num_classes=7, pretrained=False, type='UNetFormer', window_size=8), data_preprocessor=dict( bgr_to_rgb=True, mean=[ 123.675, 116.28, 103.53, ], pad_val=0, seg_pad_val=255, size=( 1920, 1920, ), std=[ 58.395, 57.12, 57.375, ], type='SegDataPreProcessor'), decode_head=dict( align_corners=False, channels=48, concat_input=False, dropout_ratio=0.1, in_channels=8, in_index=0, loss_decode=[ dict(loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False), dict(loss_weight=1.0, type='DiceLoss', use_sigmoid=True), ], norm_cfg=dict(requires_grad=True, type='SyncBN'), num_classes=7, num_convs=1, type='DirectHead'), pretrained=None, test_cfg=dict(mode='whole'), train_cfg=dict(), type='EncoderDecoder_unetformer') norm_cfg = dict(requires_grad=True, type='SyncBN') optim_wrapper = dict( clip_grad=None, optimizer=dict(lr=0.04, momentum=0.9, type='SGD', weight_decay=0.0005), type='OptimWrapper') optimizer = dict(lr=0.04, momentum=0.9, type='SGD', weight_decay=0.0005) param_scheduler = [ dict( begin=0, by_epoch=False, end=20000, eta_min=0.0004, power=0.9, type='PolyLR'), ] resume = False test_cfg = dict(type='TestLoop') test_dataloader = dict( batch_size=1, dataset=dict( data_prefix=dict(img_path='img/test', seg_map_path='mask/test'), data_root='/media/data2/ZJB/MPNet/data_root/UAV', pipeline=[ dict(type='LoadImageFromFile'), dict(keep_ratio=False, scale=( 6016, 3968, ), type='Resize'), dict(type='LoadAnnotations'), dict(type='PackSegInputs'), ], type='UVA_dataset'), num_workers=4, persistent_workers=True, sampler=dict(shuffle=False, type='DefaultSampler')) test_evaluator = dict( iou_metrics=[ 'mIoU', ], type='IoUMetric') test_pipeline = [ dict(type='LoadImageFromFile'), dict(keep_ratio=False, scale=( 6016, 3968, ), type='Resize'), dict(type='LoadAnnotations'), dict(type='PackSegInputs'), ] train_cfg = dict(max_iters=20000, type='IterBasedTrainLoop', val_interval=2000) train_dataloader = dict( batch_size=4, dataset=dict( data_prefix=dict(img_path='img/train', seg_map_path='mask/train'), data_root='/media/data2/ZJB/MPNet/data_root/UAV', pipeline=[ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict( keep_ratio=True, ratio_range=( 1.0, 1.0, ), scale=( 6000, 4000, ), type='RandomResize'), dict( cat_max_ratio=0.75, crop_size=( 1920, 1920, ), type='RandomCrop'), dict(prob=0.5, type='RandomFlip'), dict(type='PhotoMetricDistortion'), dict(type='PackSegInputs'), ], type='UVA_dataset'), num_workers=4, persistent_workers=True, sampler=dict(shuffle=True, type='InfiniteSampler')) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict( keep_ratio=True, ratio_range=( 1.0, 1.0, ), scale=( 6000, 4000, ), type='RandomResize'), dict(cat_max_ratio=0.75, crop_size=( 1920, 1920, ), type='RandomCrop'), dict(prob=0.5, type='RandomFlip'), dict(type='PhotoMetricDistortion'), dict(type='PackSegInputs'), ] val_cfg = dict(type='ValLoop') val_dataloader = dict( batch_size=1, dataset=dict( data_prefix=dict(img_path='img/val', seg_map_path='mask/val'), data_root='/media/data2/ZJB/MPNet/data_root/UAV', pipeline=[ dict(type='LoadImageFromFile'), dict(keep_ratio=True, scale=( 6000, 4000, ), type='Resize'), dict(type='LoadAnnotations'), dict(type='PackSegInputs'), ], type='UVA_dataset'), num_workers=4, persistent_workers=True, sampler=dict(shuffle=False, type='DefaultSampler')) val_evaluator = dict( iou_metrics=[ 'mIoU', ], type='IoUMetric') vis_backends = [ dict(type='LocalVisBackend'), ] visualizer = dict( name='visualizer', type='SegLocalVisualizer', vis_backends=[ dict(type='LocalVisBackend'), ]) work_dir = './work_dirs/unetformer_UAV_6000X4000'