255 lines
6.6 KiB
Python
255 lines
6.6 KiB
Python
crop_size = (
|
|
1920,
|
|
1920,
|
|
)
|
|
data_preprocessor = dict(
|
|
bgr_to_rgb=True,
|
|
mean=[
|
|
123.675,
|
|
116.28,
|
|
103.53,
|
|
],
|
|
pad_val=0,
|
|
seg_pad_val=255,
|
|
size=(
|
|
1920,
|
|
1920,
|
|
),
|
|
std=[
|
|
58.395,
|
|
57.12,
|
|
57.375,
|
|
],
|
|
type='SegDataPreProcessor')
|
|
data_root = '/media/data2/ZJB/MPNet/data_root/UAV'
|
|
dataset_type = 'UVA_dataset'
|
|
default_hooks = dict(
|
|
checkpoint=dict(
|
|
by_epoch=False,
|
|
interval=2000,
|
|
max_keep_ckpts=3,
|
|
save_best='mIoU',
|
|
type='CheckpointHook'),
|
|
logger=dict(interval=50, log_metric_by_epoch=False, type='LoggerHook'),
|
|
param_scheduler=dict(type='ParamSchedulerHook'),
|
|
sampler_seed=dict(type='DistSamplerSeedHook'),
|
|
timer=dict(type='IterTimerHook'),
|
|
visualization=dict(type='SegVisualizationHook'))
|
|
default_scope = 'mmseg'
|
|
env_cfg = dict(
|
|
cudnn_benchmark=True,
|
|
dist_cfg=dict(backend='nccl'),
|
|
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
|
img_ratios = [
|
|
0.5,
|
|
0.75,
|
|
1.0,
|
|
1.25,
|
|
1.5,
|
|
1.75,
|
|
]
|
|
launcher = 'none'
|
|
load_from = None
|
|
log_level = 'INFO'
|
|
log_processor = dict(by_epoch=False)
|
|
model = dict(
|
|
auxiliary_head=dict(
|
|
align_corners=False,
|
|
channels=48,
|
|
concat_input=False,
|
|
dropout_ratio=0.1,
|
|
in_channels=8,
|
|
in_index=0,
|
|
loss_decode=[
|
|
dict(loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False),
|
|
dict(loss_weight=0.4, type='DiceLoss', use_sigmoid=True),
|
|
],
|
|
norm_cfg=dict(requires_grad=True, type='SyncBN'),
|
|
num_classes=7,
|
|
num_convs=1,
|
|
type='DirectHead'),
|
|
backbone=dict(
|
|
backbone_name='swsl_resnet18',
|
|
decode_channels=64,
|
|
dropout=0.1,
|
|
num_classes=7,
|
|
pretrained=False,
|
|
type='UNetFormer',
|
|
window_size=8),
|
|
data_preprocessor=dict(
|
|
bgr_to_rgb=True,
|
|
mean=[
|
|
123.675,
|
|
116.28,
|
|
103.53,
|
|
],
|
|
pad_val=0,
|
|
seg_pad_val=255,
|
|
size=(
|
|
1920,
|
|
1920,
|
|
),
|
|
std=[
|
|
58.395,
|
|
57.12,
|
|
57.375,
|
|
],
|
|
type='SegDataPreProcessor'),
|
|
decode_head=dict(
|
|
align_corners=False,
|
|
channels=48,
|
|
concat_input=False,
|
|
dropout_ratio=0.1,
|
|
in_channels=8,
|
|
in_index=0,
|
|
loss_decode=[
|
|
dict(loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False),
|
|
dict(loss_weight=1.0, type='DiceLoss', use_sigmoid=True),
|
|
],
|
|
norm_cfg=dict(requires_grad=True, type='SyncBN'),
|
|
num_classes=7,
|
|
num_convs=1,
|
|
type='DirectHead'),
|
|
pretrained=None,
|
|
test_cfg=dict(mode='whole'),
|
|
train_cfg=dict(),
|
|
type='EncoderDecoder_unetformer')
|
|
norm_cfg = dict(requires_grad=True, type='SyncBN')
|
|
optim_wrapper = dict(
|
|
clip_grad=None,
|
|
optimizer=dict(lr=0.04, momentum=0.9, type='SGD', weight_decay=0.0005),
|
|
type='OptimWrapper')
|
|
optimizer = dict(lr=0.04, momentum=0.9, type='SGD', weight_decay=0.0005)
|
|
param_scheduler = [
|
|
dict(
|
|
begin=0,
|
|
by_epoch=False,
|
|
end=20000,
|
|
eta_min=0.0004,
|
|
power=0.9,
|
|
type='PolyLR'),
|
|
]
|
|
resume = False
|
|
test_cfg = dict(type='TestLoop')
|
|
test_dataloader = dict(
|
|
batch_size=1,
|
|
dataset=dict(
|
|
data_prefix=dict(img_path='img/test', seg_map_path='mask/test'),
|
|
data_root='/media/data2/ZJB/MPNet/data_root/UAV',
|
|
pipeline=[
|
|
dict(type='LoadImageFromFile'),
|
|
dict(keep_ratio=False, scale=(
|
|
6016,
|
|
3968,
|
|
), type='Resize'),
|
|
dict(type='LoadAnnotations'),
|
|
dict(type='PackSegInputs'),
|
|
],
|
|
type='UVA_dataset'),
|
|
num_workers=4,
|
|
persistent_workers=True,
|
|
sampler=dict(shuffle=False, type='DefaultSampler'))
|
|
test_evaluator = dict(
|
|
iou_metrics=[
|
|
'mIoU',
|
|
], type='IoUMetric')
|
|
test_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(keep_ratio=False, scale=(
|
|
6016,
|
|
3968,
|
|
), type='Resize'),
|
|
dict(type='LoadAnnotations'),
|
|
dict(type='PackSegInputs'),
|
|
]
|
|
train_cfg = dict(max_iters=20000, type='IterBasedTrainLoop', val_interval=2000)
|
|
train_dataloader = dict(
|
|
batch_size=4,
|
|
dataset=dict(
|
|
data_prefix=dict(img_path='img/train', seg_map_path='mask/train'),
|
|
data_root='/media/data2/ZJB/MPNet/data_root/UAV',
|
|
pipeline=[
|
|
dict(type='LoadImageFromFile'),
|
|
dict(type='LoadAnnotations'),
|
|
dict(
|
|
keep_ratio=True,
|
|
ratio_range=(
|
|
1.0,
|
|
1.0,
|
|
),
|
|
scale=(
|
|
6000,
|
|
4000,
|
|
),
|
|
type='RandomResize'),
|
|
dict(
|
|
cat_max_ratio=0.75,
|
|
crop_size=(
|
|
1920,
|
|
1920,
|
|
),
|
|
type='RandomCrop'),
|
|
dict(prob=0.5, type='RandomFlip'),
|
|
dict(type='PhotoMetricDistortion'),
|
|
dict(type='PackSegInputs'),
|
|
],
|
|
type='UVA_dataset'),
|
|
num_workers=4,
|
|
persistent_workers=True,
|
|
sampler=dict(shuffle=True, type='InfiniteSampler'))
|
|
train_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(type='LoadAnnotations'),
|
|
dict(
|
|
keep_ratio=True,
|
|
ratio_range=(
|
|
1.0,
|
|
1.0,
|
|
),
|
|
scale=(
|
|
6000,
|
|
4000,
|
|
),
|
|
type='RandomResize'),
|
|
dict(cat_max_ratio=0.75, crop_size=(
|
|
1920,
|
|
1920,
|
|
), type='RandomCrop'),
|
|
dict(prob=0.5, type='RandomFlip'),
|
|
dict(type='PhotoMetricDistortion'),
|
|
dict(type='PackSegInputs'),
|
|
]
|
|
val_cfg = dict(type='ValLoop')
|
|
val_dataloader = dict(
|
|
batch_size=1,
|
|
dataset=dict(
|
|
data_prefix=dict(img_path='img/val', seg_map_path='mask/val'),
|
|
data_root='/media/data2/ZJB/MPNet/data_root/UAV',
|
|
pipeline=[
|
|
dict(type='LoadImageFromFile'),
|
|
dict(keep_ratio=True, scale=(
|
|
6000,
|
|
4000,
|
|
), type='Resize'),
|
|
dict(type='LoadAnnotations'),
|
|
dict(type='PackSegInputs'),
|
|
],
|
|
type='UVA_dataset'),
|
|
num_workers=4,
|
|
persistent_workers=True,
|
|
sampler=dict(shuffle=False, type='DefaultSampler'))
|
|
val_evaluator = dict(
|
|
iou_metrics=[
|
|
'mIoU',
|
|
], type='IoUMetric')
|
|
vis_backends = [
|
|
dict(type='LocalVisBackend'),
|
|
]
|
|
visualizer = dict(
|
|
name='visualizer',
|
|
type='SegLocalVisualizer',
|
|
vis_backends=[
|
|
dict(type='LocalVisBackend'),
|
|
])
|
|
work_dir = './work_dirs/unetformer_UAV_6000X4000'
|