ai_project_v1/uv_module/unetformer_UAV_6000X4000.py

255 lines
6.6 KiB
Python

crop_size = (
1920,
1920,
)
data_preprocessor = dict(
bgr_to_rgb=True,
mean=[
123.675,
116.28,
103.53,
],
pad_val=0,
seg_pad_val=255,
size=(
1920,
1920,
),
std=[
58.395,
57.12,
57.375,
],
type='SegDataPreProcessor')
data_root = '/media/data2/ZJB/MPNet/data_root/UAV'
dataset_type = 'UVA_dataset'
default_hooks = dict(
checkpoint=dict(
by_epoch=False,
interval=2000,
max_keep_ckpts=3,
save_best='mIoU',
type='CheckpointHook'),
logger=dict(interval=50, log_metric_by_epoch=False, type='LoggerHook'),
param_scheduler=dict(type='ParamSchedulerHook'),
sampler_seed=dict(type='DistSamplerSeedHook'),
timer=dict(type='IterTimerHook'),
visualization=dict(type='SegVisualizationHook'))
default_scope = 'mmseg'
env_cfg = dict(
cudnn_benchmark=True,
dist_cfg=dict(backend='nccl'),
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
img_ratios = [
0.5,
0.75,
1.0,
1.25,
1.5,
1.75,
]
launcher = 'none'
load_from = None
log_level = 'INFO'
log_processor = dict(by_epoch=False)
model = dict(
auxiliary_head=dict(
align_corners=False,
channels=48,
concat_input=False,
dropout_ratio=0.1,
in_channels=8,
in_index=0,
loss_decode=[
dict(loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False),
dict(loss_weight=0.4, type='DiceLoss', use_sigmoid=True),
],
norm_cfg=dict(requires_grad=True, type='SyncBN'),
num_classes=7,
num_convs=1,
type='DirectHead'),
backbone=dict(
backbone_name='swsl_resnet18',
decode_channels=64,
dropout=0.1,
num_classes=7,
pretrained=False,
type='UNetFormer',
window_size=8),
data_preprocessor=dict(
bgr_to_rgb=True,
mean=[
123.675,
116.28,
103.53,
],
pad_val=0,
seg_pad_val=255,
size=(
1920,
1920,
),
std=[
58.395,
57.12,
57.375,
],
type='SegDataPreProcessor'),
decode_head=dict(
align_corners=False,
channels=48,
concat_input=False,
dropout_ratio=0.1,
in_channels=8,
in_index=0,
loss_decode=[
dict(loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False),
dict(loss_weight=1.0, type='DiceLoss', use_sigmoid=True),
],
norm_cfg=dict(requires_grad=True, type='SyncBN'),
num_classes=7,
num_convs=1,
type='DirectHead'),
pretrained=None,
test_cfg=dict(mode='whole'),
train_cfg=dict(),
type='EncoderDecoder_unetformer')
norm_cfg = dict(requires_grad=True, type='SyncBN')
optim_wrapper = dict(
clip_grad=None,
optimizer=dict(lr=0.04, momentum=0.9, type='SGD', weight_decay=0.0005),
type='OptimWrapper')
optimizer = dict(lr=0.04, momentum=0.9, type='SGD', weight_decay=0.0005)
param_scheduler = [
dict(
begin=0,
by_epoch=False,
end=20000,
eta_min=0.0004,
power=0.9,
type='PolyLR'),
]
resume = False
test_cfg = dict(type='TestLoop')
test_dataloader = dict(
batch_size=1,
dataset=dict(
data_prefix=dict(img_path='img/test', seg_map_path='mask/test'),
data_root='/media/data2/ZJB/MPNet/data_root/UAV',
pipeline=[
dict(type='LoadImageFromFile'),
dict(keep_ratio=False, scale=(
6016,
3968,
), type='Resize'),
dict(type='LoadAnnotations'),
dict(type='PackSegInputs'),
],
type='UVA_dataset'),
num_workers=4,
persistent_workers=True,
sampler=dict(shuffle=False, type='DefaultSampler'))
test_evaluator = dict(
iou_metrics=[
'mIoU',
], type='IoUMetric')
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(keep_ratio=False, scale=(
6016,
3968,
), type='Resize'),
dict(type='LoadAnnotations'),
dict(type='PackSegInputs'),
]
train_cfg = dict(max_iters=20000, type='IterBasedTrainLoop', val_interval=2000)
train_dataloader = dict(
batch_size=4,
dataset=dict(
data_prefix=dict(img_path='img/train', seg_map_path='mask/train'),
data_root='/media/data2/ZJB/MPNet/data_root/UAV',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(
keep_ratio=True,
ratio_range=(
1.0,
1.0,
),
scale=(
6000,
4000,
),
type='RandomResize'),
dict(
cat_max_ratio=0.75,
crop_size=(
1920,
1920,
),
type='RandomCrop'),
dict(prob=0.5, type='RandomFlip'),
dict(type='PhotoMetricDistortion'),
dict(type='PackSegInputs'),
],
type='UVA_dataset'),
num_workers=4,
persistent_workers=True,
sampler=dict(shuffle=True, type='InfiniteSampler'))
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(
keep_ratio=True,
ratio_range=(
1.0,
1.0,
),
scale=(
6000,
4000,
),
type='RandomResize'),
dict(cat_max_ratio=0.75, crop_size=(
1920,
1920,
), type='RandomCrop'),
dict(prob=0.5, type='RandomFlip'),
dict(type='PhotoMetricDistortion'),
dict(type='PackSegInputs'),
]
val_cfg = dict(type='ValLoop')
val_dataloader = dict(
batch_size=1,
dataset=dict(
data_prefix=dict(img_path='img/val', seg_map_path='mask/val'),
data_root='/media/data2/ZJB/MPNet/data_root/UAV',
pipeline=[
dict(type='LoadImageFromFile'),
dict(keep_ratio=True, scale=(
6000,
4000,
), type='Resize'),
dict(type='LoadAnnotations'),
dict(type='PackSegInputs'),
],
type='UVA_dataset'),
num_workers=4,
persistent_workers=True,
sampler=dict(shuffle=False, type='DefaultSampler'))
val_evaluator = dict(
iou_metrics=[
'mIoU',
], type='IoUMetric')
vis_backends = [
dict(type='LocalVisBackend'),
]
visualizer = dict(
name='visualizer',
type='SegLocalVisualizer',
vis_backends=[
dict(type='LocalVisBackend'),
])
work_dir = './work_dirs/unetformer_UAV_6000X4000'