ai_project_v1/yml/local_yolo_config.yml

291 lines
16 KiB
YAML
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#本地存储方法和pt文件的对应关系避免走数据库
# 包括func_description 在内的前面三个参数是方法级别的,只跟方法相关;后面的参数才跟模型相关
local_func:
- model_func_id: 100000 #对应到postgres 表的model_func_Id字段
filter_cls: [ 0,1,5 ] # 增加过滤字段,仅识别模型中的哪几个字段
func_description: "当前方法主要用作xxxxxxxx"
yolo_version: "11"
path: "pt/best.pt"
cls_index: [ 0,1,2,3,4,5,6,7,8,9 ]
cls: [ "pedestrian","people","bicycle","car","van","truck","tricycle","awning-tricycle","bus","motor" ]
cls_en: [ "人","人","自行车","汽车","厢型车","卡车","三轮车","三轮车","公交","摩托" ]
cls_description: "人、车识别的模型"
- model_func_id: 100008 #对应到postgres 表的model_func_Id字段
filter_cls: [ 0,1,2,3,4 ] # 增加过滤字段,仅识别模型中的哪几个字段
func_description: "人员配置统计,基于安全帽的颜色,做人员配置统计"
yolo_version: "11"
path: "pt/gdaq.pt"
cls_index: [ 0,1,2,3,4,5,6,7,8,9 ]
cls: [ "RedHat","WhiteHat","BlueHat","YellowHat","NoHat","Harness","NoHarness","Rail","BrokenRail","TrashPile" ]
cls_en: [ "红帽","白帽","蓝帽","黄帽","未带安全帽","安全带","没系安全带","围栏","破损围栏","乱堆放" ]
cls_description: "人员配置统计,基于安全帽的颜色,做人员配置统计"
- model_func_id: 100052 #对应到postgres 表的model_func_Id字段
filter_cls: [ 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 ] # 增加过滤字段,仅识别模型中的哪几个字段
func_description: "挖掘机,自卸卡车,压路机,移动式起重机,固定式起重机,轮式装载机,混凝土搅拌车,反铲式装载机,推土机,平地机"
yolo_version: "11"
path: "pt/GDCL.pt"
cls_index: [ 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 ]
cls: [ "Excavator","Flatbed","Truck","DumpTruck","Roller","CraneMobile","CraneTruck","CraneTower","CraneFixed","LoaderWheel","CementTanker","ConcreteMixer","MixerTruck","BackhoeLoader","LoaderWheel","Grader","PileDriver" ]
cls_en: [ "挖掘机", "卡车", "卡车", "卡车", " 压路机", "起重机","起重机", "塔吊", "塔吊", "塔吊", "水泥罐车", "水泥罐车",
"水泥罐车", "挖土机", "推土机", "地坪机", "打桩机" ]
cls_description: "挖掘机,自卸卡车,压路机,移动式起重机,固定式起重机,轮式装载机,混凝土搅拌车,反铲式装载机,推土机,平地机"
- model_func_id: 100091 #对应到postgres 表的model_func_Id字段
filter_cls: [ 4 ] # 增加过滤字段,仅识别模型中的哪几个字段
func_description: "统计未佩戴安全帽"
yolo_version: "11"
path: "pt/gdaq.pt"
cls_index: [ 0,1,2,3,4,5,6,7,8,9 ]
cls: [ "RedHat","WhiteHat","BlueHat","YellowHat","NoHat","Harness","NoHarness","Rail","BrokenRail","TrashPile" ]
cls_en: [ "红帽","白帽","蓝帽","黄帽","未带安全帽","安全带","没系安全带","围栏","破损围栏","乱堆放" ]
cls_description: "人员配置统计,基于安全帽的颜色,做人员配置统计"
#当前是临时用法,后续还是查库查表
- model_func_id: 101901 #对应到postgres 表的model_func_Id字段
filter_cls: [ 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 ] # 增加过滤字段,仅识别模型中的哪几个字段
func_description: "挖掘机,自卸卡车,压路机,移动式起重机,固定式起重机,轮式装载机,混凝土搅拌车,反铲式装载机,推土机,平地机"
yolo_version: "11"
path: "pt/GDCL.pt"
cls_index: [ 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 ]
cls: [ "Excavator","Flatbed","Truck","DumpTruck","Roller","CraneMobile","CraneTruck","CraneTower","CraneFixed","LoaderWheel","CementTanker","ConcreteMixer","MixerTruck","BackhoeLoader","LoaderWheel","Grader","PileDriver" ]
cls_en: [ "挖掘机", "卡车", "卡车", "卡车", " 压路机", "起重机","起重机", "塔吊", "塔吊", "塔吊", "水泥罐车", "水泥罐车",
"水泥罐车", "挖土机", "推土机", "地坪机", "打桩机" ]
cls_description: "挖掘机,自卸卡车,压路机,移动式起重机,固定式起重机,轮式装载机,混凝土搅拌车,反铲式装载机,推土机,平地机"
#当前是临时用法,后续还是查库查表
- model_func_id: 101101 #对应到postgres 表的model_func_Id字段
filter_cls: [ 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 ] # 增加过滤字段,仅识别模型中的哪几个字段
func_description: "挖掘机,自卸卡车,压路机,移动式起重机,固定式起重机,轮式装载机,混凝土搅拌车,反铲式装载机,推土机,平地机"
yolo_version: "11"
path: "pt/GDCL.pt"
cls_index: [ 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 ]
cls: [ "Excavator","Flatbed","Truck","DumpTruck","Roller","CraneMobile","CraneTruck","CraneTower","CraneFixed","LoaderWheel","CementTanker","ConcreteMixer","MixerTruck","BackhoeLoader","LoaderWheel","Grader","PileDriver" ]
cls_en: [ "挖掘机", "卡车", "卡车", "卡车", " 压路机", "起重机","起重机", "塔吊", "塔吊", "塔吊", "水泥罐车", "水泥罐车",
"水泥罐车", "挖土机", "推土机", "地坪机", "打桩机" ]
cls_description: "挖掘机,自卸卡车,压路机,移动式起重机,固定式起重机,轮式装载机,混凝土搅拌车,反铲式装载机,推土机,平地机"
- model_func_id: 101102 #对应到postgres 表的model_func_Id字段
filter_cls: [ 0,1,2,3,4,5,6,7,8,9 ] # 增加过滤字段,仅识别模型中的哪几个字段
func_description: "当前方法主要用作xxxxxxxx"
yolo_version: "11"
path: "pt/best.pt"
cls_index: [ 0,1,2,3,4,5,6,7,8,9 ]
cls: [ "pedestrian","people","bicycle","car","van"," truck","tricycle","awning-tricycle","bus","motor" ]
cls_en: [ "人","人","自行车","汽车","厢型车","卡车","三轮车","三轮车","公交","摩托" ]
cls_description: "人、车识别的模型"
- model_func_id: 101201 #对应到postgres 表的model_func_Id字段
filter_cls: [ 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 ] # 增加过滤字段,仅识别模型中的哪几个字段
func_description: "挖掘机,自卸卡车,压路机,移动式起重机,固定式起重机,轮式装载机,混凝土搅拌车,反铲式装载机,推土机,平地机"
yolo_version: "11"
path: "pt/GDCL.pt"
cls_index: [ 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 ]
cls: [ "Excavator","Flatbed","Truck","DumpTruck","Roller","CraneMobile","CraneTruck","CraneTower","CraneFixed","LoaderWheel","CementTanker","ConcreteMixer","MixerTruck","BackhoeLoader","LoaderWheel","Grader","PileDriver" ]
cls_en: [ "挖掘机", "卡车", "卡车", "卡车", " 压路机", "起重机","起重机", "塔吊", "塔吊", "塔吊", "水泥罐车", "水泥罐车",
"水泥罐车", "挖土机", "推土机", "地坪机", "打桩机" ]
cls_description: "挖掘机,自卸卡车,压路机,移动式起重机,固定式起重机,轮式装载机,混凝土搅拌车,反铲式装载机,推土机,平地机"
#当前是临时用法,后续还是查库查表
- model_func_id: 101202 #对应到postgres 表的model_func_Id字段
filter_cls: [ 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 ] # 增加过滤字段,仅识别模型中的哪几个字段
func_description: "挖掘机,自卸卡车,压路机,移动式起重机,固定式起重机,轮式装载机,混凝土搅拌车,反铲式装载机,推土机,平地机"
yolo_version: "11"
path: "pt/GDCL.pt"
cls_index: [ 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 ]
cls: [ "Excavator","Flatbed","Truck","DumpTruck","Roller","CraneMobile","CraneTruck","CraneTower","CraneFixed","LoaderWheel","CementTanker","ConcreteMixer","MixerTruck","BackhoeLoader","LoaderWheel","Grader","PileDriver" ]
cls_en: [ "挖掘机", "卡车", "卡车", "卡车", " 压路机", "起重机","起重机", "塔吊", "塔吊", "塔吊", "水泥罐车", "水泥罐车",
"水泥罐车", "挖土机", "推土机", "地坪机", "打桩机" ]
cls_description: "挖掘机,自卸卡车,压路机,移动式起重机,固定式起重机,轮式装载机,混凝土搅拌车,反铲式装载机,推土机,平地机"
- model_func_id: 101203 #对应到postgres 表的model_func_Id字段
filter_cls: [ 0,1,2,3,4,5,6,7,8,9 ] # 增加过滤字段,仅识别模型中的哪几个字段
func_description: "当前方法主要用作xxxxxxxx"
yolo_version: "11"
path: "pt/best.pt"
cls_index: [ 0,1,2,3,4,5,6,7,8,9 ]
cls: [ "pedestrian","people","bicycle","car","van"," truck","tricycle","awning-tricycle","bus","motor" ]
cls_en: [ "人","人","自行车","汽车","厢型车","卡车","三轮车","三轮车","公交","摩托" ]
cls_description: "人、车识别的模型"
#
- model_func_id: 100001 #对应到postgres 表的model_func_Id字段
filter_cls: [0,1,2,3,4,5,6,7,8,9] # 增加过滤字段,仅识别模型中的哪几个字段
func_description: "当前方法主要用作xxxxxxxx"
yolo_version: "11"
path: "pt/best.pt"
cls_index: [ 0,1,2,3,4,5,6,7,8,9 ]
cls: [ "pedestrian","people","bicycle","car","van"," truck","tricycle","awning-tricycle","bus","motor" ]
cls_en: [ "人","人","自行车","汽车","厢型车","卡车","三轮车","三轮车","公交","摩托" ]
cls_description: "人、车识别的模型"
- model_func_id: 100002 #对应到postgres 表的model_func_Id字段
filter_cls: [ 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 ] # 增加过滤字段,仅识别模型中的哪几个字段
func_description: "挖掘机,自卸卡车,压路机,移动式起重机,固定式起重机,轮式装载机,混凝土搅拌车,反铲式装载机,推土机,平地机"
yolo_version: "11"
path: "pt/GDCL.pt"
cls_index: [ 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 ]
cls: [ "Excavator","Flatbed","Truck","DumpTruck","Roller","CraneMobile","CraneTruck","CraneTower","CraneFixed","LoaderWheel","CementTanker","ConcreteMixer","MixerTruck","BackhoeLoader","LoaderWheel","Grader","PileDriver" ]
cls_en: [ "挖掘机", "卡车", "卡车", "卡车", " 压路机", "起重机","起重机", "塔吊", "塔吊", "塔吊", "水泥罐车", "水泥罐车",
"水泥罐车", "挖土机", "推土机", "地坪机", "打桩机" ]
cls_description: "挖掘机,自卸卡车,压路机,移动式起重机,固定式起重机,轮式装载机,混凝土搅拌车,反铲式装载机,推土机,平地机"
- model_func_id: 100003 #对应到postgres 表的model_func_Id字段
filter_cls: [ 4 ] # 增加过滤字段,仅识别模型中的哪几个字段
func_description: "统计未佩戴安全帽"
yolo_version: "11"
path: "pt/gdaq.pt"
cls_index: [ 0,1,2,3,4,5,6,7,8,9 ]
cls: [ "RedHat","WhiteHat","BlueHat","YellowHat","NoHat","Harness","NoHarness","Rail","BrokenRail","TrashPile" ]
cls_en: [ "红帽","白帽","蓝帽","黄帽","未带安全帽","安全带","没系安全带","围栏","破损围栏","乱堆放" ]
cls_description: "判断安全帽"
- model_func_id: 100004 #对应到postgres 表的model_func_Id字段
filter_cls: [ 0,1,2,3,4,5 ] # 增加过滤字段,仅识别模型中的哪几个字段
func_description: "当前方法主要用作xxxxxxxx"
yolo_version: "11"
path: "pt/build.pt"
cls: [ "honeycomb&rough_surface","peeling&chipping","cavity&hole","rust on rebar","damage&exposed rebar","creck"]
cls_index: [ 0,1,2,3,4,5 ]
cls_en: [ "蜂窝","剥落","空洞","钢筋锈蚀","破损","裂缝"]
cls_description: "之前的模型,判断桥梁损害"
- model_func_id: 100005 #对应到postgres 表的model_func_Id字段
filter_cls: [ 0 ] # 增加过滤字段,仅识别模型中的哪几个字段
func_description: "当前方法主要用作xxxxxxxx"
yolo_version: "11"
path: "pt/fire.pt"
cls: [ "smoke"]
cls_index: [ 0 ]
cls_en: [ "烟雾"]
cls_description: "之前的模型,判断烟火"
- model_func_id: 100006 #对应到postgres 表的model_func_Id字段
filter_cls: [ 0,1,2,3,4,5,6,7,8,9 ] # 增加过滤字段,仅识别模型中的哪几个字段
func_description: "当前方法主要用作xxxxxxxx"
yolo_version: "11"
path: "pt/hwgf.pt"
cls: [ "dyrb","dmjrb","dyrb_ycdw","dmjrb_ycdw","ycdw","dyrb_zd","zd_hw","dmjrb_zd","ycdw_zd","ejgdl","ygfs_hw","ejgdl_ycdw"]
cls_index: [ 0,1,2,3,4,5 ,6,7,8,9]
cls_en: [ "单一热班","大面积热斑","单一热班&异常低温","大面积热班&异常低温","异常低温","单一热斑&遮挡","异常低温&热斑","二极管短路","阳光反射","二极管短路&异常低温"]
cls_description: "之前的模型,基于红外判断光伏情况"
- model_func_id: 100007 #对应到postgres 表的model_func_Id字段
filter_cls: [ 0,1,2,3 ] # 增加过滤字段,仅识别模型中的哪几个字段
func_description: "当前方法主要用作xxxxxxxx"
yolo_version: "11"
path: "pt/HWRC.pt"
cls: [ "human","track","car","bicycle"]
cls_index: [ 0,1,2,3]
cls_en: [ "人","卡车","车","自行车"]
cls_description: "之前的模型,判断红外人车"
- model_func_id: 100008 #对应到postgres 表的model_func_Id字段
filter_cls: [ 0,1,2,3,4,5,6,7,8,9 ] # 增加过滤字段,仅识别模型中的哪几个字段
func_description: "当前方法主要用作xxxxxxxx"
yolo_version: "11"
path: "pt/KeJianGangSolarProblems.pt"
cls: [ "ygfs","zw","yyzd_zw","ns","ygfs_yyzd","yyzd_ns","zw_ns","gfbzjbx","gfbqs","mbsl"]
cls_index: [ 0,1,2,3,4,5 ,6,7,8,9]
cls_en: ["遮挡","阳光反射","脏污","遮挡&脏污","鸟粪","阳光反射&遮挡","遮挡&鸟粪","脏污&鸟粪","光伏板变形","光伏板缺失","面板破裂"]
cls_description: "之前的模型,判断光伏相关"
- model_func_id: 100009 #对应到postgres 表的model_func_Id字段
filter_cls: [ 0,1 ] # 增加过滤字段,仅识别模型中的哪几个字段
func_description: "当前方法主要用作xxxxxxxx"
yolo_version: "11"
path: "pt/smoke.pt"
cls: [ "smoke","hote(infrared)&fire"]
cls_index: [ 0,1]
cls_en: [ "烟","火"]
cls_description: "之前的模型,判断烟火"
- model_func_id: 100010 #对应到postgres 表的model_func_Id字段
filter_cls: [ 0 ] # 增加过滤字段,仅识别模型中的哪几个字段
func_description: "当前方法主要用作xxxxxxxx"
yolo_version: "11"
path: "pt/trash.pt"
cls: [ "垃圾"] #当前模型确实中文
cls_index: [ 0]
cls_en: [ "垃圾"]
cls_description: "之前的模型,判断垃圾"
- model_func_id: 100011 #对应到postgres 表的model_func_Id字段
filter_cls: [ 0 ] # 增加过滤字段,仅识别模型中的哪几个字段
func_description: "当前方法主要用作xxxxxxxx"
yolo_version: "11"
path: "pt/tree.pt"
cls: [ "unhealthy"]
cls_index: [ 0]
cls_en: [ "不健康"]
cls_description: "之前的模型,判断病树"
- model_func_id: 100012 #对应到postgres 表的model_func_Id字段
filter_cls: [ 0,1 ] # 增加过滤字段,仅识别模型中的哪几个字段
func_description: "当前方法主要用作xxxxxxxx"
yolo_version: "11"
path: "pt/yanwu2.pt"
cls: [ "YanWu","ReYuan" ]
cls_index: [ 0,1]
cls_en: [ "烟雾","热源"]
cls_description: "之前的模型,判断烟雾"
- model_func_id: 100013 #对应到postgres 表的model_func_Id字段
filter_cls: [ 0,1,2,3,4,5 ] # 增加过滤字段,仅识别模型中的哪几个字段
func_description: "当前方法主要用作xxxxxxxx"
yolo_version: "11"
path: "pt/LF.pt"
cls: [ "鳄鱼纹裂缝","纵向裂缝","斜裂缝","坑洞","修补","横向裂缝"] #当前模型确实中文
cls_index: [ 0,1,2,3,4,5]
cls_en: [ "鳄鱼纹裂缝","纵向裂缝","斜裂缝","坑洞","修补","横向裂缝"]
cls_description: "之前的模型,判断裂缝"
- model_func_id: 100014 #对应到postgres 表的model_func_Id字段
filter_cls: [ 0] # 0
func_description: "当前方法用作判断是否是否带帽子(鸭舌帽也算帽子)"
yolo_version: "11"
path: "pt/gdaq_hat0903_background.pt"
# path: "pt/yolo11m_gdaq_hat_0902.pt"
cls: [ "NoHat","Hat"] #当前模型确实中文
cls_index: [ 0,1]
cls_en: [ "没带安全帽","安全帽"]
cls_description: "当前方法用作判断是否是否带帽子(鸭舌帽也算帽子)"