123 lines
4.2 KiB
Python
123 lines
4.2 KiB
Python
import os
|
||
import torch
|
||
import cv2
|
||
import argparse
|
||
import numpy as np
|
||
from pprint import pprint
|
||
from tqdm import tqdm
|
||
from mmseg.apis import init_model, inference_model
|
||
"""
|
||
|
||
"""
|
||
|
||
DEVICE = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
|
||
# 测试图像所在文件夹
|
||
# IMAGE_FILE_PATH = r"D:\project\UAV_model/need_prediction"
|
||
IMAGE_FILE_PATH = r"C:\Users\14867\Desktop\seg_tiff"
|
||
# 模型训练结果的config配置文件路径
|
||
CONFIG = r'D:\project\UAV_model/tools/work_dirs/unetformer_UAV_6000X4000/unetformer_UAV_6000X4000.py'
|
||
# 模型训练结果的权重文件路径
|
||
CHECKPOINT = r'D:\project\UAV_model/tools/work_dirs/unetformer_UAV_6000X4000/best_mIoU_iter_20000.pth'
|
||
# 模型推理测试结果的保存路径,每个模型的推理结果都保存在`{save_dir}/{模型config同名文件夹}`下,如文末图片所示。
|
||
SAVE_DIR = r"D:\project\UAV_model/prediction_results"
|
||
|
||
|
||
def parse_args():
|
||
parser = argparse.ArgumentParser(description='Visualize CAM')
|
||
parser.add_argument('--img', default=IMAGE_FILE_PATH, help='Image file')
|
||
parser.add_argument('--config', default=CONFIG, help='Config file')
|
||
parser.add_argument('--checkpoint', default=CHECKPOINT, help='Checkpoint file')
|
||
parser.add_argument('--device', default=DEVICE, help='device')
|
||
parser.add_argument('--save_dir', default=SAVE_DIR, help='save_dir')
|
||
|
||
args = parser.parse_args()
|
||
return args
|
||
|
||
|
||
def make_full_path(root_list, root_path):
|
||
file_full_path_list = []
|
||
for filename in root_list:
|
||
file_full_path = os.path.join(root_path, filename)
|
||
file_full_path_list.append(file_full_path)
|
||
return file_full_path_list
|
||
|
||
|
||
def read_filepath(root):
|
||
from natsort import natsorted
|
||
test_image_list = natsorted(os.listdir(root))
|
||
test_image_full_path_list = make_full_path(test_image_list, root)
|
||
return test_image_full_path_list
|
||
|
||
from PIL import Image
|
||
def save_colored_prediction(predictions, save_path):
|
||
|
||
# color_map = [
|
||
# [0, 0, 0],
|
||
# [165, 42, 42],
|
||
# [0, 255, 0],2
|
||
# [255, 255, 0],
|
||
# [0, 0, 255],
|
||
# [128, 128, 128],
|
||
# [0, 255, 255]
|
||
# ]
|
||
|
||
|
||
color_map = [
|
||
[255, 0, 0], # 类别0: 红色
|
||
[0, 255, 0], # 类别1: 绿色
|
||
[0, 0, 255], # 类别2: 蓝色
|
||
[255, 255, 0], # 类别3: 黄色
|
||
[255, 0, 255], # 类别4: 品红
|
||
[0, 255, 255], # 类别5: 青色
|
||
[128, 0, 128] # 类别6: 紫色
|
||
]
|
||
|
||
# 类别 0:黑色 ;背景
|
||
# 类别 1:棕色 ;荒地
|
||
# 类别 2:绿色 ;林地
|
||
# 类别 3:黄色 ;农田
|
||
# 类别 4:蓝色 ;水域
|
||
# 类别 5:灰色 ;道路
|
||
# 类别 6:青色 ;建筑用地
|
||
|
||
|
||
|
||
# 创建一个空的 RGB 图像
|
||
colored_image = np.zeros((predictions.shape[0], predictions.shape[1], 3), dtype=np.uint8)
|
||
|
||
# 将每个类别的颜色赋值到图像
|
||
for class_id in range(len(color_map)):
|
||
colored_image[predictions == class_id] = color_map[class_id]
|
||
|
||
# 转换为 PIL 图像并保存
|
||
image = Image.fromarray(colored_image)
|
||
image.save(save_path)
|
||
def main():
|
||
args = parse_args()
|
||
|
||
model_mmseg = init_model(args.config, args.checkpoint, device=args.device)
|
||
|
||
for imgs in tqdm(read_filepath(args.img)):
|
||
result = inference_model(model_mmseg, imgs)
|
||
pred_mask = result.pred_sem_seg.data.squeeze(0).detach().cpu().numpy().astype(np.uint8)
|
||
|
||
save_path = os.path.join(args.save_dir, f"{os.path.basename(args.config).split('.')[0]}")
|
||
if not os.path.exists(save_path):
|
||
os.makedirs(save_path)
|
||
saves_path=os.path.join(save_path, f"{os.path.basename(result.img_path).split('.')[0]}.png")
|
||
save_colored_prediction(pred_mask,saves_path)
|
||
|
||
#
|
||
# pred_mask[pred_mask == 1] = 255
|
||
# save_path = os.path.join(args.save_dir, f"{os.path.basename(args.config).split('.')[0]}")
|
||
#
|
||
# if not os.path.exists(save_path):
|
||
# os.makedirs(save_path)
|
||
#
|
||
# cv2.imwrite(os.path.join(save_path, f"{os.path.basename(result.img_path).split('.')[0]}.png"), pred_mask,
|
||
# [cv2.IMWRITE_PNG_COMPRESSION, 0])
|
||
|
||
|
||
if __name__ == '__main__':
|
||
main()
|