360 lines
15 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from mmseg.models.backbones.CTCFNetblock.ViT import truncated_normal_, BasicBlock, PathchEmbed
from mmseg.models.backbones.CTCFNetblock.modules import Bi_DirectionalDecoder, FeatureAggregationModule, DepthwiseConv2d
from mmseg.registry import MODELS
class CNN_Block123(nn.Module):
def __init__(self, inchans, outchans):
super().__init__()
self.stage = nn.Sequential(
DepthwiseConv2d(in_chans=inchans, out_chans=outchans, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(outchans),
nn.ReLU(),
DepthwiseConv2d(in_chans=outchans, out_chans=outchans, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(outchans),
nn.ReLU(),
)
self.conv1x1 = DepthwiseConv2d(in_chans=inchans, out_chans=outchans, kernel_size=1)
self.maxpool = nn.MaxPool2d(kernel_size=3,stride=2,padding=1)
def forward(self, x):
stage = self.stage(x)
max = self.maxpool(x)
max = self.conv1x1(max)
stage = stage + max
return stage
class CNN_Block45(nn.Module):
def __init__(self, inchans, outchans):
super().__init__()
self.stage = nn.Sequential(
DepthwiseConv2d(in_chans=inchans, out_chans=outchans, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(outchans),
nn.ReLU(),
DepthwiseConv2d(in_chans=outchans, out_chans=outchans, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(outchans),
nn.ReLU(),
DepthwiseConv2d(in_chans=outchans, out_chans=outchans, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(outchans),
nn.ReLU(),
)
self.conv1x1 = DepthwiseConv2d(in_chans=inchans, out_chans=outchans, kernel_size=1)
self.maxpool = nn.MaxPool2d(kernel_size=3,stride=2,padding=1)
def forward(self, x):
stage = self.stage(x)
max = self.maxpool(x)
max = self.conv1x1(max)
stage = stage + max
return stage
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0, proj_drop=0., sr_ratio=1):
super().__init__()
assert dim % num_heads == 0, f'dim {dim} should be divided by num_heads {num_heads}.'
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.q = nn.Linear(dim, dim, bias=qkv_bias)
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.sr_ratio = sr_ratio
if self.sr_ratio > 1:
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
self.norm = nn.LayerNorm(dim)
def forward(self, x, H, W):
B, N, C = x.shape
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
if self.sr_ratio > 1:
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
x_ = self.norm(x_)
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
else:
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
k, v = kv[0], kv[1]
attn = (q.matmul(k.permute(0,1,3,2))) * self.scale
attn = F.softmax(attn, dim=-1)
attn = self.attn_drop(attn)
x = (attn.matmul(v)).permute(0,2,1,3).reshape(-1, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(BasicBlock):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0.,attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, epsilon=1e-6, sr_ratio=1):
super().__init__(dim, num_heads)
self.attn = Attention(dim=dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
def forward(self, x, H, W):
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class PatchEmbed(PathchEmbed):
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super(PatchEmbed,self).__init__(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
self.norm = nn.LayerNorm(embed_dim)
def forward(self, x):
B, C, H, W = x.shape
x = self.proj(x).flatten(2).permute(0,2,1)
x = self.norm(x)
H, W = H // self.patch_size[0], W // self.patch_size[1]
return x, (H, W)
@MODELS.register_module()
class CTCFNet(nn.Module):
def __init__(self,img_size=224, patch_size=16, in_chans=3, embed_dims=[64,128,256,512],
num_heads=[1,2,4,8], mlp_ratios=[4,4,4,4], qkv_bias=False, qk_scale=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
epsilon=1e-6, depths=[3,4,6,3], sr_ratios=[8, 4, 2, 1], class_dim=2):
super().__init__()
self.class_dim = class_dim
self.depths = depths
self.img_size = img_size
self.interpolate_size = img_size // 4
self.patch_embed1 = PatchEmbed(img_size=img_size, patch_size=patch_size,
in_chans=in_chans, embed_dim=embed_dims[0])
self.patch_embed2 = PatchEmbed(img_size=img_size // 4, patch_size=2,
in_chans=embed_dims[0], embed_dim=embed_dims[1])
self.patch_embed3 = PatchEmbed(img_size=img_size // 8, patch_size=2,
in_chans=embed_dims[1], embed_dim=embed_dims[2])
self.patch_embed4 = PatchEmbed(img_size=img_size // 16, patch_size=2,
in_chans=embed_dims[2], embed_dim=embed_dims[3])
self.pos_embed1 = nn.Parameter(torch.zeros(1, self.patch_embed1.num_patches, embed_dims[0]))
self.pos_drop1 = nn.Dropout(drop_rate)
self.pos_embed2 = nn.Parameter(torch.zeros(1, self.patch_embed2.num_patches, embed_dims[1]))
self.pos_drop2 = nn.Dropout(drop_rate)
self.pos_embed3 = nn.Parameter(torch.zeros(1, self.patch_embed3.num_patches, embed_dims[2]))
self.pos_drop3 = nn.Dropout(drop_rate)
self.pos_embed4 = nn.Parameter(torch.zeros(1, self.patch_embed4.num_patches, embed_dims[3]))
self.pos_drop4 = nn.Dropout(drop_rate)
dpr = np.linspace(0, drop_path_rate, sum(depths))
cur = 0
self.block1 = nn.ModuleList([
Block(
dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0],
qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[cur + i], norm_layer=norm_layer, epsilon=epsilon,
sr_ratio = sr_ratios[0]
) for i in range(depths[0])
])
cur = cur + depths[0]
self.block2 = nn.ModuleList([
Block(
dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1],
qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[cur + i], norm_layer=norm_layer, epsilon=epsilon,
sr_ratio = sr_ratios[1]
) for i in range(depths[1])
])
cur = cur + depths[1]
self.block3 = nn.ModuleList([
Block(
dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2],
qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[cur + i], norm_layer=norm_layer, epsilon=epsilon,
sr_ratio = sr_ratios[2]
) for i in range(depths[2])
])
cur = cur+ depths[2]
self.block4 = nn.ModuleList([
Block(
dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3],
qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[cur + i], norm_layer=norm_layer, epsilon=epsilon,
sr_ratio = sr_ratios[3]
) for i in range(depths[3])
])
self.norm = norm_layer(embed_dims[3])
self.cls_token = nn.Parameter(torch.zeros(1,1,embed_dims[3]))
if class_dim > 0:
self.head = nn.Linear(embed_dims[3], class_dim)
self.cnn_branch1 = CNN_Block123(inchans=in_chans, outchans=64)
self.cnn_branch2 = CNN_Block123(inchans=64, outchans=128)
self.cnn_branch3 = CNN_Block123(inchans=64, outchans=128)
self.cnn_branch4 = CNN_Block45(inchans=128, outchans=256)
self.cnn_branch5 = CNN_Block45(inchans=320, outchans=640)
self.conv1x1_4 = nn.Conv2d(in_channels=512, out_channels=320, kernel_size=1)
self.conv1x1_3 = nn.Conv2d(in_channels=320, out_channels=128, kernel_size=1)
self.conv1x1_2 = nn.Conv2d(in_channels=128, out_channels=64, kernel_size=1)
self.CTmerge2 = FeatureAggregationModule(cnn_chans=128,trans_chans=64)
self.CTmerge3 = FeatureAggregationModule(cnn_chans=128, trans_chans=128)
self.CTmerge4 = FeatureAggregationModule(cnn_chans=256, trans_chans=320)
self.CTmerge5 = FeatureAggregationModule(cnn_chans=640, trans_chans=512)
self.stage4 = nn.Sequential(
nn.Conv2d(in_channels=640, out_channels=320,kernel_size=3,stride=1,padding=1),
nn.BatchNorm2d(320),
nn.ReLU(),
nn.Conv2d(in_channels=320, out_channels=320, kernel_size=3,stride=1,padding=1),
nn.BatchNorm2d(320),
nn.ReLU()
)
self.stage3 = nn.Sequential(
nn.Conv2d(in_channels=256, out_channels=128,kernel_size=3,stride=1,padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3,stride=1,padding=1),
nn.BatchNorm2d(128),
nn.ReLU()
)
self.stage2 = nn.Sequential(
nn.Conv2d(in_channels=128, out_channels=64,kernel_size=3,stride=1,padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3,stride=1,padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
)
self.detail_head = nn.Conv2d(in_channels=128, out_channels=self.class_dim, kernel_size=1)
self.bi_directional_decoder = Bi_DirectionalDecoder(self.interpolate_size)
self.head = nn.Sequential(
nn.Conv2d(in_channels=256, out_channels=128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(in_channels=64, out_channels=self.class_dim, kernel_size=1)
)
truncated_normal_(self.pos_embed1)
truncated_normal_(self.pos_embed2)
truncated_normal_(self.pos_embed3)
truncated_normal_(self.pos_embed4)
truncated_normal_(self.cls_token)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
truncated_normal_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1)
def reset_drop_path(self, drop_path_rate):
dpr = np.linspace(0, drop_path_rate, sum(self.depths))
cur = 0
for i in range(self.depths[0]):
self.block1[i].drop_path.drop_prob = dpr[cur + i]
cur = cur+ self.depths[0]
for i in range(self.depth[1]):
self.block2[i].drop_path.drop_prob = dpr[cur + i]
cur = cur+ self.depths[1]
for i in range(self.depth[2]):
self.block2[i].drop_path.drop_prob = dpr[cur + i]
cur = cur+ self.depths[2]
for i in range(self.depth[3]):
self.block2[i].drop_path.drop_prob = dpr[cur + i]
def forward(self, x):
B = x.shape[0]
c_s1 = self.cnn_branch1(x)
c_s2 = self.cnn_branch2(c_s1)
# Stage 1
x, (H, W) = self.patch_embed1(x)
x = x + self.pos_embed1
x = self.pos_drop1(x)
for blk in self.block1:
x = blk(x, H, W)
x = x.reshape(B, H, W, -1).permute(0,3,1,2)
x = self.CTmerge2(c_s2, x)
m_s1 = x
c_s3 = self.cnn_branch3(m_s1)
# Stage 2
x, (H, W) = self.patch_embed2(x)
x = x + self.pos_embed2
x = self.pos_drop2(x)
for blk in self.block2:
x = blk(x, H, W)
x = x.reshape(B, H, W, -1).permute(0,3,1,2)
x = self.CTmerge3(c_s3, x)
m_s2 = x
c_s4 = self.cnn_branch4(m_s2)
# Stage 3
x, (H, W) = self.patch_embed3(x)
x = x + self.pos_embed3
x = self.pos_drop3(x)
for blk in self.block3:
x = blk(x, H, W)
x = x.reshape(B, H, W, -1).permute(0,3,1,2)
x = self.CTmerge4(c_s4,x)
m_s3 = x
c_s5 = self.cnn_branch5(m_s3)
# Stage 4
x, (H, W) = self.patch_embed4(x)
x = x + self.pos_embed4
x = self.pos_drop4(x)
for blk in self.block4:
x = blk(x, H, W)
x = x.reshape(B, H, W, -1).permute(0,3,1,2)
x = self.CTmerge5(c_s5,x)
m_s4 = x
output = self.bi_directional_decoder(m_s1, m_s2, m_s3, m_s4)
output = F.interpolate(output, size = self.img_size//2, mode='bilinear', align_corners=True)
output = self.head(output)
return F.interpolate(output, size=self.img_size, mode='bilinear', align_corners=True)
#
# if self.training:
# return F.interpolate(output,size=self.img_size,mode='bilinear',align_corners=True),\
# self.detail_head(m_s2)
# else:
# return F.interpolate(output,size=self.img_size,mode='bilinear',align_corners=True)
if __name__=="__main__":
x = torch.randn(1, 3, 448, 448)
net = CTCFNet(img_size=448, patch_size=4, in_chans=3, embed_dims=[64,128,320,512],
num_heads=[1,2,4,8], mlp_ratios=[4,4,4,4], qkv_bias=False, qk_scale=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
epsilon=1e-6, depths=[3,4,6,3], sr_ratios=[8, 4, 2, 1], class_dim=2)
out = net(x)
# print(net)
print(out.size())
# flops, params = profile(net, (x,))
# print('flops: ', flops, 'params: ', params)