2025-09-26 18:03:49 +08:00
|
|
|
""""
|
|
|
|
|
main()
|
|
|
|
|
|
|
|
|
|
|
v
|
|
|
|
|
setup_logger(project)
|
|
|
|
|
|
|
|
|
|
|
v
|
|
|
|
|
get_last_model_path(project)
|
|
|
|
|
|
|
|
|
|
|
v
|
|
|
|
|
+-------------------------+
|
|
|
|
|
| 有 last.pt | 无 last.pt |
|
|
|
|
|
+-------------------------+
|
|
|
|
|
| |
|
|
|
|
|
v v
|
|
|
|
|
load_last_model() start_new_training()
|
|
|
|
|
| |
|
|
|
|
|
+-------+--------+
|
|
|
|
|
|
|
|
|
|
|
v
|
|
|
|
|
check_dataset(root)
|
|
|
|
|
|
|
|
|
|
|
v
|
|
|
|
|
split_dataset(root, ratios)
|
|
|
|
|
|
|
|
|
|
|
v
|
|
|
|
|
clean_labels(root)
|
|
|
|
|
|
|
|
|
|
|
v
|
|
|
|
|
generate_yaml(dataset_dir)
|
|
|
|
|
|
|
|
|
|
|
v
|
|
|
|
|
train_yolo(model, data_yaml)
|
|
|
|
|
|
|
|
|
|
|
v
|
|
|
|
|
保存 last.pt
|
|
|
|
|
|
|
|
|
|
|
v
|
|
|
|
|
logger.info("Saved last model path")
|
|
|
|
|
|
|
|
|
|
|
v
|
|
|
|
|
写入 logs/{project}.log
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2025-07-10 09:41:26 +08:00
|
|
|
"""
|
2025-09-26 18:03:49 +08:00
|
|
|
|
2025-07-10 09:41:26 +08:00
|
|
|
import os
|
|
|
|
|
import shutil
|
|
|
|
|
import datetime
|
|
|
|
|
import torch
|
|
|
|
|
from ultralytics import YOLO
|
|
|
|
|
import random
|
|
|
|
|
import math
|
|
|
|
|
import stat
|
|
|
|
|
import yaml
|
|
|
|
|
import psycopg2
|
|
|
|
|
from psycopg2 import OperationalError
|
|
|
|
|
from collections import Counter
|
2025-09-02 10:23:21 +08:00
|
|
|
import pandas as pd
|
2025-09-26 18:03:49 +08:00
|
|
|
import logging
|
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
import miniohelp as miniohelp
|
|
|
|
|
|
|
|
|
|
######################################## Logging ########################################
|
|
|
|
|
def setup_logger(project: str):
|
|
|
|
|
os.makedirs("logs", exist_ok=True)
|
|
|
|
|
log_file = os.path.join("logs", f"{project}.log")
|
|
|
|
|
|
|
|
|
|
logger = logging.getLogger(project)
|
|
|
|
|
if not logger.handlers:
|
|
|
|
|
logger.setLevel(logging.INFO)
|
|
|
|
|
formatter = logging.Formatter("%(asctime)s [%(levelname)s] %(message)s")
|
|
|
|
|
|
|
|
|
|
fh = logging.FileHandler(log_file, encoding="utf-8")
|
|
|
|
|
fh.setFormatter(formatter)
|
|
|
|
|
sh = logging.StreamHandler()
|
|
|
|
|
sh.setFormatter(formatter)
|
|
|
|
|
|
|
|
|
|
logger.addHandler(fh)
|
|
|
|
|
logger.addHandler(sh)
|
|
|
|
|
|
|
|
|
|
return logger
|
|
|
|
|
|
|
|
|
|
def get_last_model_from_log(project: str, default_model: str):
|
|
|
|
|
"""从日志中解析上一次训练的 last.pt 路径"""
|
|
|
|
|
log_file = os.path.join("logs", f"{project}.log")
|
|
|
|
|
if not os.path.exists(log_file):
|
|
|
|
|
return default_model
|
|
|
|
|
|
|
|
|
|
with open(log_file, "r", encoding="utf-8") as f:
|
|
|
|
|
lines = f.readlines()
|
|
|
|
|
|
|
|
|
|
for line in reversed(lines):
|
|
|
|
|
if "Saved last model path:" in line:
|
|
|
|
|
path = line.strip().split("Saved last model path:")[-1].strip()
|
|
|
|
|
if os.path.exists(path):
|
|
|
|
|
return path
|
|
|
|
|
return default_model
|
|
|
|
|
|
|
|
|
|
####################################### 工具函数 #######################################
|
2025-07-10 09:41:26 +08:00
|
|
|
def count_labels_by_class(label_dir):
|
|
|
|
|
class_counter = Counter()
|
|
|
|
|
for file in os.listdir(label_dir):
|
|
|
|
|
if file.endswith('.txt'):
|
|
|
|
|
with open(os.path.join(label_dir, file), 'r') as f:
|
|
|
|
|
for line in f:
|
|
|
|
|
class_id = line.strip().split()[0]
|
|
|
|
|
class_counter[class_id] += 1
|
|
|
|
|
return dict(class_counter)
|
2025-09-26 18:03:49 +08:00
|
|
|
|
2025-07-10 09:41:26 +08:00
|
|
|
def evaluate_model_per_class(model_path, dataset_yaml, class_names):
|
|
|
|
|
model = YOLO(model_path)
|
|
|
|
|
metrics = model.val(data=dataset_yaml, split='val')
|
2025-09-26 18:03:49 +08:00
|
|
|
class_ids = range(len(metrics.box.p))
|
2025-07-10 09:41:26 +08:00
|
|
|
results = {}
|
|
|
|
|
for i in class_ids:
|
|
|
|
|
name = class_names.get(str(i), str(i))
|
|
|
|
|
results[name] = {
|
|
|
|
|
"precision": float(metrics.box.p[i]),
|
|
|
|
|
"recall": float(metrics.box.r[i]),
|
|
|
|
|
"mAP50": float(metrics.box.map50[i]),
|
|
|
|
|
"mAP50_95": float(metrics.box.map[i])
|
|
|
|
|
}
|
|
|
|
|
return results
|
|
|
|
|
|
|
|
|
|
def link_database(db_database, db_user, db_password, db_host, db_port, search_query):
|
|
|
|
|
try:
|
|
|
|
|
with psycopg2.connect(
|
|
|
|
|
database=db_database,
|
|
|
|
|
user=db_user,
|
|
|
|
|
password=db_password,
|
|
|
|
|
host=db_host,
|
|
|
|
|
port=db_port
|
|
|
|
|
) as conn:
|
|
|
|
|
with conn.cursor() as cur:
|
|
|
|
|
cur.execute(search_query)
|
|
|
|
|
records = cur.fetchall()
|
|
|
|
|
return records
|
|
|
|
|
except OperationalError as e:
|
|
|
|
|
print(f"数据库连接或查询时发生错误: {e}")
|
|
|
|
|
except Exception as e:
|
|
|
|
|
print(f"发生了其他错误: {e}")
|
|
|
|
|
|
2025-09-26 18:03:49 +08:00
|
|
|
def down_dataset(db_database, db_user, db_password, db_host, db_port, model, logger):
|
|
|
|
|
search_query = f"SELECT * FROM aidataset WHERE model = '{model}';"
|
2025-07-10 09:41:26 +08:00
|
|
|
records = link_database(db_database, db_user, db_password, db_host, db_port, search_query)
|
|
|
|
|
if not records:
|
2025-09-26 18:03:49 +08:00
|
|
|
logger.warning("没有查询到数据。")
|
2025-07-10 09:41:26 +08:00
|
|
|
return
|
|
|
|
|
|
|
|
|
|
os.makedirs('./dataset/images', exist_ok=True)
|
|
|
|
|
os.makedirs('./dataset/labels', exist_ok=True)
|
|
|
|
|
|
|
|
|
|
for r in records:
|
|
|
|
|
img_path = r[4]
|
|
|
|
|
label_content = r[5]
|
|
|
|
|
|
|
|
|
|
local_img_name = img_path.split('/')[-1]
|
|
|
|
|
local_img_path = os.path.join('./dataset/images', local_img_name)
|
|
|
|
|
miniohelp.downFile(img_path, local_img_path)
|
|
|
|
|
|
|
|
|
|
txt_name = os.path.splitext(local_img_name)[0] + '.txt'
|
|
|
|
|
txt_path = os.path.join('./dataset/labels', txt_name)
|
|
|
|
|
with open(txt_path, 'w', encoding='utf-8') as f:
|
|
|
|
|
f.write(label_content + '\n')
|
2025-09-26 18:03:49 +08:00
|
|
|
|
|
|
|
|
logger.info("数据下载完成")
|
2025-07-10 09:41:26 +08:00
|
|
|
|
|
|
|
|
def make_writable(file_path):
|
|
|
|
|
os.chmod(file_path, stat.S_IWRITE)
|
|
|
|
|
|
2025-09-26 18:03:49 +08:00
|
|
|
def process_files_in_folder(folder_path, logger):
|
2025-07-10 09:41:26 +08:00
|
|
|
for root, _, files in os.walk(folder_path):
|
|
|
|
|
for file_name in files:
|
|
|
|
|
if file_name.endswith('.txt'):
|
|
|
|
|
file_path = os.path.join(root, file_name)
|
|
|
|
|
make_writable(file_path)
|
|
|
|
|
|
|
|
|
|
with open(file_path, 'r') as file:
|
|
|
|
|
lines = file.readlines()
|
|
|
|
|
|
|
|
|
|
processed_lines = []
|
|
|
|
|
for line in lines:
|
|
|
|
|
numbers = line.split()
|
|
|
|
|
processed_numbers = []
|
2025-09-26 18:03:49 +08:00
|
|
|
if numbers[0].isdigit():
|
2025-07-10 09:41:26 +08:00
|
|
|
processed_numbers.append(numbers[0])
|
|
|
|
|
else:
|
2025-09-26 18:03:49 +08:00
|
|
|
logger.warning(f"Unexpected value in first column: {numbers[0]}")
|
2025-07-10 09:41:26 +08:00
|
|
|
continue
|
|
|
|
|
|
2025-09-26 18:03:49 +08:00
|
|
|
skip_line = False
|
2025-07-10 09:41:26 +08:00
|
|
|
for number in numbers[1:]:
|
|
|
|
|
try:
|
|
|
|
|
number = float(number)
|
2025-09-26 18:03:49 +08:00
|
|
|
if math.isnan(number):
|
2025-07-10 09:41:26 +08:00
|
|
|
skip_line = True
|
2025-09-26 18:03:49 +08:00
|
|
|
logger.warning(f"NaN detected in {file_path}: {line}")
|
2025-07-10 09:41:26 +08:00
|
|
|
break
|
|
|
|
|
if number < 0:
|
2025-09-26 18:03:49 +08:00
|
|
|
number = abs(number)
|
|
|
|
|
processed_numbers.append(str(number))
|
2025-07-10 09:41:26 +08:00
|
|
|
except ValueError:
|
2025-09-26 18:03:49 +08:00
|
|
|
processed_numbers.append(number)
|
|
|
|
|
|
2025-07-10 09:41:26 +08:00
|
|
|
if not skip_line:
|
|
|
|
|
processed_line = ' '.join(processed_numbers)
|
|
|
|
|
processed_lines.append(processed_line)
|
|
|
|
|
|
|
|
|
|
with open(file_path, 'w') as file:
|
|
|
|
|
file.write('\n'.join(processed_lines))
|
2025-09-26 18:03:49 +08:00
|
|
|
logger.info(f"Processed {file_path}")
|
|
|
|
|
|
|
|
|
|
def split_img(img_path, label_path, split_list, new_path, class_names, logger):
|
2025-07-10 09:41:26 +08:00
|
|
|
try:
|
|
|
|
|
Data = os.path.abspath(new_path)
|
|
|
|
|
os.makedirs(Data, exist_ok=True)
|
2025-09-26 18:03:49 +08:00
|
|
|
dirs = ['train/images','val/images','test/images','train/labels','val/labels','test/labels']
|
|
|
|
|
for d in dirs: os.makedirs(os.path.join(Data, d), exist_ok=True)
|
2025-07-10 09:41:26 +08:00
|
|
|
except Exception as e:
|
2025-09-26 18:03:49 +08:00
|
|
|
logger.error(f'文件目录创建失败: {e}')
|
2025-07-10 09:41:26 +08:00
|
|
|
return
|
|
|
|
|
|
|
|
|
|
train, val, test = split_list
|
|
|
|
|
all_img = os.listdir(img_path)
|
|
|
|
|
all_img_path = [os.path.join(img_path, img) for img in all_img]
|
|
|
|
|
|
|
|
|
|
train_img = random.sample(all_img_path, int(train * len(all_img_path)))
|
|
|
|
|
train_label = [toLabelPath(img, label_path) for img in train_img]
|
|
|
|
|
for i in tqdm(range(len(train_img)), desc='train ', ncols=80, unit='img'):
|
2025-09-26 18:03:49 +08:00
|
|
|
_copy(train_img[i], os.path.join(Data,'train/images'))
|
|
|
|
|
_copy(train_label[i], os.path.join(Data,'train/labels'))
|
2025-07-10 09:41:26 +08:00
|
|
|
all_img_path.remove(train_img[i])
|
|
|
|
|
|
|
|
|
|
val_img = random.sample(all_img_path, int(val / (val + test) * len(all_img_path)))
|
|
|
|
|
val_label = [toLabelPath(img, label_path) for img in val_img]
|
|
|
|
|
for i in tqdm(range(len(val_img)), desc='val ', ncols=80, unit='img'):
|
2025-09-26 18:03:49 +08:00
|
|
|
_copy(val_img[i], os.path.join(Data,'val/images'))
|
|
|
|
|
_copy(val_label[i], os.path.join(Data,'val/labels'))
|
2025-07-10 09:41:26 +08:00
|
|
|
all_img_path.remove(val_img[i])
|
|
|
|
|
|
|
|
|
|
test_img = all_img_path
|
|
|
|
|
test_label = [toLabelPath(img, label_path) for img in test_img]
|
|
|
|
|
for i in tqdm(range(len(test_img)), desc='test ', ncols=80, unit='img'):
|
2025-09-26 18:03:49 +08:00
|
|
|
_copy(test_img[i], os.path.join(Data,'test/images'))
|
|
|
|
|
_copy(test_label[i], os.path.join(Data,'test/labels'))
|
2025-07-10 09:41:26 +08:00
|
|
|
|
|
|
|
|
generate_dataset_yaml(
|
|
|
|
|
save_path=os.path.join(Data, 'dataset.yaml'),
|
2025-09-26 18:03:49 +08:00
|
|
|
train_path=os.path.join(Data,'train/images'),
|
|
|
|
|
val_path=os.path.join(Data,'val/images'),
|
|
|
|
|
test_path=os.path.join(Data,'test/images'),
|
2025-07-10 09:41:26 +08:00
|
|
|
class_names=class_names
|
|
|
|
|
)
|
2025-09-26 18:03:49 +08:00
|
|
|
logger.info("数据集划分完成")
|
2025-07-10 09:41:26 +08:00
|
|
|
|
|
|
|
|
def _copy(from_path, to_path):
|
|
|
|
|
try:
|
|
|
|
|
shutil.copy(from_path, to_path)
|
|
|
|
|
except Exception as e:
|
|
|
|
|
print(f"复制文件时出错: {e}")
|
|
|
|
|
|
|
|
|
|
def toLabelPath(img_path, label_path):
|
|
|
|
|
img = os.path.basename(img_path)
|
|
|
|
|
label = img.replace('.jpg', '.txt')
|
|
|
|
|
return os.path.join(label_path, label)
|
|
|
|
|
|
|
|
|
|
def generate_dataset_yaml(save_path, train_path, val_path, test_path, class_names):
|
|
|
|
|
dataset_yaml = {
|
|
|
|
|
'train': train_path.replace('\\', '/'),
|
|
|
|
|
'val': val_path.replace('\\', '/'),
|
|
|
|
|
'test': test_path.replace('\\', '/'),
|
|
|
|
|
'nc': len(class_names),
|
|
|
|
|
'names': list(class_names.values())
|
|
|
|
|
}
|
|
|
|
|
with open(save_path, 'w', encoding='utf-8') as f:
|
|
|
|
|
yaml.dump(dataset_yaml, f, allow_unicode=True)
|
|
|
|
|
|
2025-09-26 18:03:49 +08:00
|
|
|
def delete_folder(folder_path, logger):
|
2025-07-10 09:41:26 +08:00
|
|
|
if os.path.exists(folder_path):
|
|
|
|
|
shutil.rmtree(folder_path)
|
2025-09-26 18:03:49 +08:00
|
|
|
logger.info(f"已删除文件夹: {folder_path}")
|
2025-07-10 09:41:26 +08:00
|
|
|
|
2025-09-26 18:03:49 +08:00
|
|
|
####################################### 训练 #######################################
|
|
|
|
|
def train(project_name, yaml_path, default_model_path, logger):
|
2025-07-10 09:41:26 +08:00
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
2025-09-26 18:03:49 +08:00
|
|
|
logger.info(f"Using device: {device}")
|
2025-07-10 09:41:26 +08:00
|
|
|
|
2025-09-26 18:03:49 +08:00
|
|
|
model_path = get_last_model_from_log(project_name, default_model_path)
|
|
|
|
|
logger.info(f"加载模型: {model_path}")
|
2025-07-10 09:41:26 +08:00
|
|
|
model = YOLO(model_path).to(device)
|
|
|
|
|
|
|
|
|
|
current_date = datetime.datetime.now().strftime("%Y%m%d_%H%M")
|
|
|
|
|
model.train(
|
|
|
|
|
data=yaml_path,
|
|
|
|
|
epochs=200,
|
|
|
|
|
pretrained=True,
|
|
|
|
|
patience=50,
|
|
|
|
|
imgsz=640,
|
2025-09-26 18:03:49 +08:00
|
|
|
device=[0],
|
2025-07-10 09:41:26 +08:00
|
|
|
workers=0,
|
2025-09-26 18:03:49 +08:00
|
|
|
project=project_name,
|
2025-09-23 15:47:28 +08:00
|
|
|
name=current_date,
|
2025-07-10 09:41:26 +08:00
|
|
|
)
|
|
|
|
|
|
2025-09-26 18:03:49 +08:00
|
|
|
trained_model_path = os.path.join('runs', 'detect', project_name, current_date, 'weights', 'last.pt')
|
2025-07-10 09:41:26 +08:00
|
|
|
if os.path.exists(trained_model_path):
|
2025-09-26 18:03:49 +08:00
|
|
|
logger.info(f"Saved last model path: {trained_model_path}")
|
|
|
|
|
|
|
|
|
|
####################################### 自动训练 #######################################
|
|
|
|
|
def auto_train(db_host, db_database, db_user, db_password, db_port, model_id,
|
|
|
|
|
img_path='./dataset/images', label_path='./dataset/labels',
|
|
|
|
|
new_path='./datasets', split_list=[0.7, 0.2, 0.1],
|
|
|
|
|
class_names=None, project_name='default_project'):
|
2025-07-10 09:41:26 +08:00
|
|
|
if class_names is None:
|
|
|
|
|
class_names = {}
|
|
|
|
|
|
2025-09-26 18:03:49 +08:00
|
|
|
logger = setup_logger(project_name)
|
2025-07-10 09:41:26 +08:00
|
|
|
|
2025-09-26 18:03:49 +08:00
|
|
|
delete_folder('dataset', logger)
|
|
|
|
|
delete_folder('datasets', logger)
|
2025-07-10 09:41:26 +08:00
|
|
|
|
2025-09-26 18:03:49 +08:00
|
|
|
down_dataset(db_database, db_user, db_password, db_host, db_port, model_id, logger)
|
|
|
|
|
process_files_in_folder(img_path, logger)
|
2025-07-10 09:41:26 +08:00
|
|
|
|
|
|
|
|
label_count = count_labels_by_class(label_path)
|
2025-09-26 18:03:49 +08:00
|
|
|
logger.info(f"标签统计: {label_count}")
|
2025-07-10 09:41:26 +08:00
|
|
|
|
2025-09-26 18:03:49 +08:00
|
|
|
split_img(img_path, label_path, split_list, new_path, class_names, logger)
|
2025-07-10 09:41:26 +08:00
|
|
|
|
|
|
|
|
base_metrics = evaluate_model_per_class('yolo11n.pt', './datasets/dataset.yaml', class_names)
|
2025-09-26 18:03:49 +08:00
|
|
|
logger.info(f"训练前基线评估: {base_metrics}")
|
2025-07-10 09:41:26 +08:00
|
|
|
|
2025-09-26 18:03:49 +08:00
|
|
|
delete_folder('dataset', logger)
|
2025-07-10 09:41:26 +08:00
|
|
|
|
2025-09-26 18:03:49 +08:00
|
|
|
train(project_name, './datasets/dataset.yaml', 'yolo11n.pt', logger)
|
2025-07-10 09:41:26 +08:00
|
|
|
|
2025-09-26 18:03:49 +08:00
|
|
|
logger.info("训练流程执行完成")
|
2025-09-02 10:23:21 +08:00
|
|
|
|
2025-09-26 18:03:49 +08:00
|
|
|
####################################### 主入口 #######################################
|
2025-07-10 09:41:26 +08:00
|
|
|
if __name__ == '__main__':
|
|
|
|
|
auto_train(
|
2025-07-10 10:04:45 +08:00
|
|
|
db_host='222.212.85.86',
|
2025-07-10 09:41:26 +08:00
|
|
|
db_database='your_database_name',
|
|
|
|
|
db_user='postgres',
|
|
|
|
|
db_password='postgres',
|
|
|
|
|
db_port='5432',
|
|
|
|
|
model_id='best.pt',
|
|
|
|
|
img_path='./dataset/images',
|
|
|
|
|
label_path='./dataset/labels',
|
|
|
|
|
new_path='./datasets',
|
|
|
|
|
split_list=[0.7, 0.2, 0.1],
|
|
|
|
|
class_names={'0': 'human', '1': 'car'},
|
|
|
|
|
project_name='my_project'
|
|
|
|
|
)
|