101 lines
3.7 KiB
Python
Raw Normal View History

2025-07-10 09:41:26 +08:00
import os
import shutil
import cv2
import collections
from ultralytics import YOLO
from miniohelp import downFile, upload_file, parse_minio_url # 确保你有这些工具函数
from minio import Minio
def process_images(yolo_model, image_list, class_filter, input_folder, output_folder, minio_info):
# 初始化 MinIO 客户端# 用配置字典初始化 Minio 客户端对象
# 清洗 endpoint去掉 http:// 或 https:// 前缀
endpoint = minio_info["MinIOEndpoint"].replace("http://", "").replace("https://", "")
# 初始化 MinIO 客户端
minio = Minio(
endpoint=endpoint,
access_key=minio_info["MinIOAccessKey"],
secret_key=minio_info["MinIOSecretKey"],
secure=False
)
os.makedirs(input_folder, exist_ok=True)
os.makedirs(output_folder, exist_ok=True)
model = YOLO(yolo_model)
class_ids_filter = [int(cls) for cls in class_filter.split(",")] if class_filter else None
output_image_list = []
for item in image_list:
img_id = item["id"]
img_url = item["path"]
# 解析 MinIO 地址
if img_url.startswith("http"):
bucket_name, img_path = parse_minio_url(img_url)
else:
bucket_name, img_path = "default-bucket", img_url
try:
# 下载原图到本地
local_input_path = os.path.join(input_folder, os.path.basename(img_path))
downFile(minio, img_path, bucket_name, local_input_path)
# 读取图像
image = cv2.imread(local_input_path)
if image is None:
raise ValueError(f"无法读取图像: {local_input_path}")
# YOLO 检测
results = model.predict(image,
classes=class_ids_filter,
conf=0.5,
iou = 0.111,
show_labels = False,)
result = results[0]
# 统计类别数
class_counts = collections.Counter(result.boxes.cls.cpu().numpy().astype(int)) if result.boxes is not None else {}
filtered_class_counts = {k: v for k, v in class_counts.items() if k in class_ids_filter}
# 转换所有的 numpy.int64 为 Python 的 int 类型
detected_classes = [int(cls) for cls in filtered_class_counts.keys()]
detected_numbers = [int(num) for num in filtered_class_counts.values()]
aim = bool(detected_classes)
# 保存标注图像
annotated_image = result.plot(labels=False)
filename_no_ext, ext = os.path.splitext(os.path.basename(img_path))
output_filename = f"{filename_no_ext}_ai{ext}"
local_output_path = os.path.join(output_folder, output_filename)
cv2.imwrite(local_output_path, annotated_image)
# 上传标注图像到 MinIO
minio_path = upload_file(minio, local_output_path, bucket_name, os.path.dirname(img_path))
except Exception as e:
print(f"[错误] 处理失败 - {img_path},错误: {str(e)}")
detected_classes = []
detected_numbers = []
aim = False
output_filename = ""
minio_path = ""
output_image_list.append({
"id": img_id,
"minio_path":minio_path,
"aim": aim,
"class": detected_classes,
"number": detected_numbers
})
# 清理临时目录
shutil.rmtree(input_folder, ignore_errors=True)
shutil.rmtree(output_folder, ignore_errors=True)
return {
"status": "success",
"message": "Detection completed",
"data": output_image_list
}