yoooger
This commit is contained in:
parent
8e2c1b8654
commit
0ea0d1a81a
1
Ai_tottle/.codemap/main-panel.json
Normal file
1
Ai_tottle/.codemap/main-panel.json
Normal file
@ -0,0 +1 @@
|
||||
[]
|
5
Ai_tottle/.vscode/settings.json
vendored
Normal file
5
Ai_tottle/.vscode/settings.json
vendored
Normal file
@ -0,0 +1,5 @@
|
||||
{
|
||||
"python-envs.defaultEnvManager": "ms-python.python:conda",
|
||||
"python-envs.defaultPackageManager": "ms-python.python:conda",
|
||||
"python-envs.pythonProjects": []
|
||||
}
|
@ -13,7 +13,6 @@ from map_find import map_process_images
|
||||
from yolo_train import auto_train
|
||||
import torch
|
||||
from yolo_photo import map_process_images_with_progress # 引入你的处理函数
|
||||
from tiles import TilesetProcessor
|
||||
# 日志配置
|
||||
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
||||
logger = logging.getLogger(__name__)
|
||||
|
@ -30,7 +30,7 @@ def get_user_power(user_id: str, yaml_name: str) -> int | None:
|
||||
|
||||
conn.autocommit = True # 只读查询推荐设置
|
||||
with conn.cursor() as cur:
|
||||
cur.execute("SELECT power FROM outusers WHERE user_id = %s", (user_id,))
|
||||
cur.execute(" WHERE user_id = %s", (user_id,))
|
||||
row = cur.fetchone()
|
||||
if row:
|
||||
return row[0]
|
||||
|
@ -139,7 +139,7 @@ class TaskManager:
|
||||
logger.warning("已将所有任务标记为停止状态")
|
||||
|
||||
|
||||
app = Sanic("YoloStreamService")
|
||||
app = Sanic("YoloStreamServiceOut")
|
||||
CORS(app)
|
||||
task_manager = TaskManager()
|
||||
|
||||
@ -613,4 +613,4 @@ if __name__ == "__main__":
|
||||
print("正在安装psutil库...")
|
||||
subprocess.check_call([sys.executable, "-m", "pip", "install", "psutil"])
|
||||
|
||||
app.run(host="0.0.0.0", port=12315, debug=False, access_log=True)
|
||||
app.run(host="0.0.0.0", port=12317, debug=False, access_log=True)
|
||||
|
BIN
ai3/best.pt
Normal file
BIN
ai3/best.pt
Normal file
Binary file not shown.
BIN
ai3/build.pt
Normal file
BIN
ai3/build.pt
Normal file
Binary file not shown.
13
ai3/config.yaml
Normal file
13
ai3/config.yaml
Normal file
@ -0,0 +1,13 @@
|
||||
minio:
|
||||
endpoint: "222.212.85.86:9000"
|
||||
access_key: "adminjdskfj"
|
||||
secret_key: "123456ksldjfal@Y"
|
||||
secure: false
|
||||
web: "http://222.212.85.86"
|
||||
|
||||
sql:
|
||||
host: '222.212.85.86'
|
||||
port: 5432
|
||||
dbname: 'postgres'
|
||||
user: 'postgres'
|
||||
password: 'root'
|
562
ai3/cv_video.py
Normal file
562
ai3/cv_video.py
Normal file
@ -0,0 +1,562 @@
|
||||
from threading import Thread, Lock, Event
|
||||
import time
|
||||
import queue
|
||||
from ultralytics import YOLO # 导入 Ultralytics YOLO 模型
|
||||
import os, cv2, torch, time, queue, subprocess
|
||||
import numpy as np
|
||||
|
||||
# 全局变量
|
||||
ifAI = {'status': False}
|
||||
deskLock = Lock()
|
||||
frame_queue = queue.Queue(maxsize=60) # 增加帧缓冲队列大小
|
||||
processed_frame_queue = queue.Queue(maxsize=30) # 处理后的帧队列
|
||||
stop_event = Event()
|
||||
|
||||
def setIfAI(pb1):
|
||||
deskLock.acquire()
|
||||
ifAI['status'] = pb1
|
||||
deskLock.release()
|
||||
|
||||
def getIfAI():
|
||||
return ifAI['status']
|
||||
|
||||
def stopAIVideo():
|
||||
print("正在停止AI视频处理...")
|
||||
setIfAI(False)
|
||||
stop_event.set()
|
||||
|
||||
# 等待足够长的时间确保资源释放
|
||||
wait_count = 0
|
||||
max_wait = 5 # 减少最大等待时间到5秒
|
||||
|
||||
while stop_event.is_set() and wait_count < max_wait:
|
||||
time.sleep(0.5)
|
||||
wait_count += 1
|
||||
|
||||
if wait_count >= max_wait:
|
||||
print("警告: 停止AI视频处理超时,强制终止")
|
||||
# 不使用_thread._interrupt_main(),改用其他方式强制终止
|
||||
try:
|
||||
# 尝试终止可能运行的进程
|
||||
import os
|
||||
import signal
|
||||
import psutil
|
||||
|
||||
# 查找并终止可能的FFmpeg进程
|
||||
current_process = psutil.Process(os.getpid())
|
||||
for child in current_process.children(recursive=True):
|
||||
try:
|
||||
child_name = child.name().lower()
|
||||
if 'ffmpeg' in child_name:
|
||||
print(f"正在终止子进程: {child.pid} ({child_name})")
|
||||
child.send_signal(signal.SIGTERM)
|
||||
except:
|
||||
pass
|
||||
except:
|
||||
pass
|
||||
else:
|
||||
print("AI视频处理已停止")
|
||||
|
||||
def startAIVideo(video_path, output_url, m1, cls, confidence):
|
||||
if ifAI['status']:
|
||||
stopAIVideo()
|
||||
time.sleep(1)
|
||||
stop_event.clear()
|
||||
thread = Thread(target=startAIVideo2,
|
||||
args=(video_path, output_url, m1, cls, confidence))
|
||||
# cls2_thread = Thread(target=cls2_find, args=(video_path,m1, cls, confidence))
|
||||
# cls2_thread.daemon = True # 守护线程,主程序退出时线程也会退出
|
||||
thread.daemon = True # 守护线程,主程序退出时线程也会退出
|
||||
|
||||
|
||||
thread.start()
|
||||
# cls2_thread.start()
|
||||
|
||||
def read_frames(cap, frame_queue):
|
||||
"""优化的帧读取线程"""
|
||||
frame_count = 0
|
||||
last_time = time.time()
|
||||
last_fps_time = time.time()
|
||||
# 减小目标帧间隔时间,提高读取帧率
|
||||
target_time_per_frame = 1.0 / 60.0 # 目标帧间隔时间(提高到60fps)
|
||||
|
||||
# 添加连接断开检测
|
||||
connection_error_count = 0
|
||||
max_connection_errors = 10 # 最多允许连续10次连接错误
|
||||
last_successful_read = time.time()
|
||||
max_read_wait = 30.0 # 30秒无法读取则认为连接断开
|
||||
|
||||
# 预先丢弃几帧,确保从新帧开始处理
|
||||
for _ in range(5):
|
||||
cap.grab()
|
||||
|
||||
while not stop_event.is_set():
|
||||
current_time = time.time()
|
||||
elapsed_time = current_time - last_time
|
||||
|
||||
# 检查是否长时间无法读取帧
|
||||
if current_time - last_successful_read > max_read_wait:
|
||||
print(f"警告: {max_read_wait}秒内未能读取到有效帧,可能连接已断开")
|
||||
stop_event.set()
|
||||
break
|
||||
|
||||
# 帧率控制,但更积极地读取
|
||||
if elapsed_time < target_time_per_frame:
|
||||
time.sleep(target_time_per_frame - elapsed_time)
|
||||
continue
|
||||
|
||||
# 当队列快满时,跳过一些帧以避免延迟累积
|
||||
if frame_queue.qsize() > frame_queue.maxsize * 0.8:
|
||||
# 跳过一些帧
|
||||
cap.grab()
|
||||
last_time = time.time()
|
||||
continue
|
||||
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
print("拉流错误:无法读取帧")
|
||||
connection_error_count += 1
|
||||
if connection_error_count >= max_connection_errors:
|
||||
print(f"连续{max_connection_errors}次无法读取帧,可能连接已断开,正在停止流程...")
|
||||
stop_event.set()
|
||||
break
|
||||
time.sleep(0.5) # 短暂等待后重试
|
||||
continue
|
||||
|
||||
# 成功读取了帧,重置错误计数
|
||||
connection_error_count = 0
|
||||
last_successful_read = time.time()
|
||||
|
||||
frame_count += 1
|
||||
if frame_count % 60 == 0: # 每60帧计算一次FPS
|
||||
current_fps_time = time.time()
|
||||
fps = 60 / (current_fps_time - last_fps_time)
|
||||
print(f"拉流FPS: {fps:.2f}")
|
||||
last_fps_time = current_fps_time
|
||||
|
||||
last_time = time.time()
|
||||
frame_queue.put((frame, time.time())) # 添加时间戳
|
||||
|
||||
def process_frames(frame_queue, processed_frame_queue, ov_model, cls, confidence):
|
||||
"""处理帧的线程,添加帧率控制"""
|
||||
error_count = 0 # 添加错误计数器
|
||||
max_errors = 5 # 最大容许错误次数
|
||||
frame_count = 0
|
||||
process_times = [] # 用于计算平均处理时间
|
||||
|
||||
# 设置YOLO模型配置,提高性能
|
||||
ov_model.conf = confidence # 设置置信度阈值
|
||||
|
||||
# 优化推理性能
|
||||
try:
|
||||
# 导入torch库
|
||||
import torch
|
||||
# 尝试启用ONNX Runtime加速
|
||||
ov_model.to('cuda:0' if torch.cuda.is_available() else 'cpu')
|
||||
# 调整批处理大小为1,减少内存占用
|
||||
if hasattr(ov_model, 'args') and hasattr(ov_model.args, 'batch'):
|
||||
ov_model.args.batch = 1
|
||||
# 使用half精度,提高性能
|
||||
if torch.cuda.is_available() and hasattr(ov_model, 'model'):
|
||||
try:
|
||||
ov_model.model = ov_model.model.half()
|
||||
except Exception as half_err:
|
||||
print(f"半精度转换失败: {half_err}")
|
||||
except Exception as e:
|
||||
print(f"模型优化配置警告: {e}")
|
||||
|
||||
# 缓存先前的检测结果,用于提高稳定性
|
||||
last_results = None
|
||||
skip_counter = 0
|
||||
max_skip = 2 # 最多跳过几帧不处理
|
||||
|
||||
while not stop_event.is_set():
|
||||
try:
|
||||
if processed_frame_queue.qsize() >= processed_frame_queue.maxsize * 0.8:
|
||||
# 如果输出队列接近满,等待一段时间
|
||||
time.sleep(0.01)
|
||||
continue
|
||||
|
||||
frame, timestamp = frame_queue.get(timeout=0.2)
|
||||
|
||||
# 处理延迟过大的帧
|
||||
if time.time() - timestamp > 0.3: # 减少延迟阈值
|
||||
continue
|
||||
|
||||
frame_count += 1
|
||||
|
||||
# 间隔采样,每n帧处理一次,减少计算量
|
||||
if skip_counter > 0 and last_results is not None:
|
||||
skip_counter -= 1
|
||||
# 使用上次的检测结果
|
||||
annotated_frame = last_results.plot(conf=False, line_width=1, font_size=1.5)
|
||||
processed_frame_queue.put((annotated_frame, timestamp))
|
||||
continue
|
||||
|
||||
process_start = time.time()
|
||||
|
||||
# 动态调整处理尺寸,根据队列积压情况
|
||||
resize_scale = 1.0
|
||||
if frame_queue.qsize() > frame_queue.maxsize * 0.7:
|
||||
resize_scale = 0.4 # 高负载时大幅降低分辨率
|
||||
elif frame_queue.qsize() > frame_queue.maxsize * 0.5:
|
||||
resize_scale = 0.6 # 中等负载时适度降低分辨率
|
||||
elif frame_queue.qsize() > frame_queue.maxsize * 0.3:
|
||||
resize_scale = 0.8 # 轻微负载时轻微降低分辨率
|
||||
|
||||
# 调整图像尺寸以加快处理
|
||||
if resize_scale < 1.0:
|
||||
process_frame = cv2.resize(frame, (0, 0), fx=resize_scale, fy=resize_scale)
|
||||
else:
|
||||
process_frame = frame
|
||||
|
||||
# 执行推理
|
||||
try:
|
||||
results = ov_model(process_frame, classes=cls, show=False)
|
||||
last_results = results[0] # 保存检测结果用于后续帧
|
||||
|
||||
# 如果尺寸调整过,需要将结果转换回原始尺寸
|
||||
if resize_scale < 1.0:
|
||||
# 绘制检测框
|
||||
annotated_frame = cv2.resize(results[0].plot(conf=False, line_width=1, font_size=1.5),
|
||||
(frame.shape[1], frame.shape[0]))
|
||||
else:
|
||||
annotated_frame = results[0].plot(conf=False, line_width=1, font_size=1.5)
|
||||
|
||||
# 在负载高时启用跳帧处理
|
||||
if frame_queue.qsize() > frame_queue.maxsize * 0.5:
|
||||
skip_counter = max_skip
|
||||
except Exception as infer_err:
|
||||
print(f"推理错误: {infer_err}")
|
||||
if last_results is not None:
|
||||
# 使用上次的结果
|
||||
annotated_frame = last_results.plot(conf=False, line_width=1, font_size=1.5)
|
||||
else:
|
||||
# 如果没有上次的结果,简单返回原始帧
|
||||
annotated_frame = frame.copy()
|
||||
|
||||
process_end = time.time()
|
||||
process_times.append(process_end - process_start)
|
||||
if len(process_times) > 30:
|
||||
process_times.pop(0)
|
||||
|
||||
if frame_count % 30 == 0:
|
||||
avg_process_time = sum(process_times) / len(process_times)
|
||||
fps = 1.0 / avg_process_time if avg_process_time > 0 else 0
|
||||
print(f"模型处理FPS: {fps:.2f}, 平均处理时间: {avg_process_time*1000:.2f}ms, 队列大小: {frame_queue.qsize()}, 缩放比例: {resize_scale:.2f}")
|
||||
|
||||
processed_frame_queue.put((annotated_frame, timestamp))
|
||||
error_count = 0 # 成功处理后重置错误计数
|
||||
except queue.Empty:
|
||||
continue
|
||||
except Exception as e:
|
||||
error_count += 1
|
||||
print(f"处理帧错误: {e}")
|
||||
if error_count >= max_errors:
|
||||
print(f"连续处理错误达到{max_errors}次,正在停止处理...")
|
||||
stop_event.set()
|
||||
break
|
||||
|
||||
def write_frames(processed_frame_queue, pipe, size):
|
||||
"""写入帧的线程,添加平滑处理"""
|
||||
last_write_time = time.time()
|
||||
target_time_per_frame = 1.0 / 30.0 # 30fps
|
||||
pipe_error_count = 0 # 添加错误计数
|
||||
max_pipe_errors = 3 # 最大容忍错误数
|
||||
frame_count = 0
|
||||
last_fps_time = time.time()
|
||||
skipped_frames = 0
|
||||
|
||||
# 使用队列存储最近几帧,用于在需要时进行插值
|
||||
recent_frames = []
|
||||
max_recent_frames = 5 # 增加缓存帧数量,提高平滑性
|
||||
|
||||
# 使用双缓冲机制提高写入速度
|
||||
buffer1 = bytearray(size[0] * size[1] * 3)
|
||||
buffer2 = bytearray(size[0] * size[1] * 3)
|
||||
current_buffer = buffer1
|
||||
|
||||
# 帧率控制参数
|
||||
min_frame_interval = target_time_per_frame * 0.5 # 允许的最小帧间隔
|
||||
max_frame_interval = target_time_per_frame * 2.0 # 允许的最大帧间隔
|
||||
|
||||
while not stop_event.is_set():
|
||||
try:
|
||||
# 获取处理后的帧,超时时间较短以便更平滑地处理
|
||||
frame, timestamp = processed_frame_queue.get(timeout=0.05)
|
||||
|
||||
# 存储最近的帧用于插值
|
||||
recent_frames.append(frame)
|
||||
if len(recent_frames) > max_recent_frames:
|
||||
recent_frames.pop(0)
|
||||
|
||||
current_time = time.time()
|
||||
elapsed = current_time - last_write_time
|
||||
|
||||
# 如果两帧间隔太短,考虑合并或跳过
|
||||
if elapsed < min_frame_interval and len(recent_frames) >= 2:
|
||||
skipped_frames += 1
|
||||
continue
|
||||
|
||||
# 如果两帧间隔太长,进行插值平滑
|
||||
if elapsed > max_frame_interval and len(recent_frames) >= 2:
|
||||
# 计算需要插入的帧数
|
||||
frames_to_insert = min(int(elapsed / target_time_per_frame), 3)
|
||||
|
||||
for i in range(frames_to_insert):
|
||||
# 创建插值帧
|
||||
weight = (i + 1) / (frames_to_insert + 1)
|
||||
interpolated_frame = cv2.addWeighted(recent_frames[-2], 1-weight, recent_frames[-1], weight, 0)
|
||||
|
||||
# 切换双缓冲
|
||||
current_buffer = buffer2 if current_buffer is buffer1 else buffer1
|
||||
|
||||
# 高效调整大小并写入
|
||||
interpolated_resized = cv2.resize(interpolated_frame, size, interpolation=cv2.INTER_LINEAR)
|
||||
img_bytes = interpolated_resized.tobytes()
|
||||
|
||||
# 写入管道
|
||||
pipe.stdin.write(img_bytes)
|
||||
pipe.stdin.flush()
|
||||
|
||||
# 切换双缓冲
|
||||
current_buffer = buffer2 if current_buffer is buffer1 else buffer1
|
||||
|
||||
# 正常写入当前帧 - 使用高效的调整大小方法
|
||||
resized_frame = cv2.resize(frame, size, interpolation=cv2.INTER_LINEAR)
|
||||
img_bytes = resized_frame.tobytes()
|
||||
pipe.stdin.write(img_bytes)
|
||||
pipe.stdin.flush()
|
||||
|
||||
frame_count += 1
|
||||
if frame_count % 30 == 0:
|
||||
current_fps_time = time.time()
|
||||
fps = 30 / (current_fps_time - last_fps_time)
|
||||
print(f"推流FPS: {fps:.2f}, 跳过的帧: {skipped_frames}, 队列大小: {processed_frame_queue.qsize()}")
|
||||
last_fps_time = current_fps_time
|
||||
skipped_frames = 0
|
||||
|
||||
last_write_time = time.time()
|
||||
pipe_error_count = 0 # 成功写入后重置错误计数
|
||||
|
||||
except queue.Empty:
|
||||
# 队列为空且有足够的最近帧时,考虑生成插值帧以保持流畅
|
||||
if len(recent_frames) >= 2 and time.time() - last_write_time > target_time_per_frame:
|
||||
try:
|
||||
# 创建插值帧
|
||||
interpolated_frame = cv2.addWeighted(recent_frames[-2], 0.5, recent_frames[-1], 0.5, 0)
|
||||
|
||||
# 切换双缓冲
|
||||
current_buffer = buffer2 if current_buffer is buffer1 else buffer1
|
||||
|
||||
resized_frame = cv2.resize(interpolated_frame, size, interpolation=cv2.INTER_LINEAR)
|
||||
img_bytes = resized_frame.tobytes()
|
||||
pipe.stdin.write(img_bytes)
|
||||
pipe.stdin.flush()
|
||||
last_write_time = time.time()
|
||||
except Exception:
|
||||
pass
|
||||
continue
|
||||
except Exception as e:
|
||||
print(f"写入帧错误: {e}")
|
||||
pipe_error_count += 1
|
||||
if pipe_error_count >= max_pipe_errors:
|
||||
print("FFmpeg管道错误过多,正在终止进程...")
|
||||
stop_event.set() # 主动结束所有线程
|
||||
break
|
||||
|
||||
def startAIVideo2(video_path, output_url, m1, cls, confidence):
|
||||
rtmp = output_url
|
||||
setIfAI(True)
|
||||
|
||||
cap = None
|
||||
pipe = None
|
||||
read_thread = None
|
||||
process_thread = None
|
||||
write_thread = None
|
||||
ov_model = None
|
||||
|
||||
try:
|
||||
global frame_queue, processed_frame_queue, stop_event
|
||||
stop_event = Event()
|
||||
|
||||
os.environ["OMP_NUM_THREADS"] = "4"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
||||
|
||||
print(f"PyTorch 可用: {torch.__version__}, CUDA可用: {torch.cuda.is_available()}")
|
||||
if torch.cuda.is_available():
|
||||
print(f"GPU: {torch.cuda.get_device_name(0)}")
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
print("预加载YOLO模型...")
|
||||
model_params = {}
|
||||
try:
|
||||
test_model = YOLO(m1)
|
||||
if hasattr(test_model, "task"):
|
||||
model_params["task"] = "detect"
|
||||
if torch.cuda.is_available():
|
||||
model_params["half"] = True
|
||||
import inspect
|
||||
if "verbose" in inspect.signature(YOLO.__init__).parameters:
|
||||
model_params["verbose"] = False
|
||||
except Exception as e:
|
||||
print(f"参数检测失败,将使用默认参数: {e}")
|
||||
model_params = {}
|
||||
|
||||
retry_count = 0
|
||||
while retry_count < 3:
|
||||
try:
|
||||
ov_model = YOLO(m1, **model_params)
|
||||
dummy_frame = np.zeros((1080, 1920, 3), dtype=np.uint8)
|
||||
for _ in range(3):
|
||||
ov_model(dummy_frame, classes=cls, conf=confidence, show=False)
|
||||
print("YOLO模型加载成功并预热完成")
|
||||
break
|
||||
except Exception as e:
|
||||
retry_count += 1
|
||||
print(f"YOLO模型加载失败(尝试 {retry_count}/3): {e}")
|
||||
if "unexpected keyword" in str(e):
|
||||
param = str(e).split("'")[-2]
|
||||
if param in model_params:
|
||||
print(f"移除不支持的参数: {param}")
|
||||
del model_params[param]
|
||||
time.sleep(2)
|
||||
|
||||
if ov_model is None:
|
||||
raise Exception("无法加载YOLO模型")
|
||||
|
||||
ov_model.conf = confidence
|
||||
|
||||
print(f"正在连接视频流: {video_path}")
|
||||
cap = cv2.VideoCapture(video_path, cv2.CAP_FFMPEG)
|
||||
cap.set(cv2.CAP_PROP_BUFFERSIZE, 5)
|
||||
cap.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'H264'))
|
||||
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1920)
|
||||
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080)
|
||||
|
||||
if not cap.isOpened():
|
||||
raise Exception(f"无法打开视频流: {video_path}")
|
||||
|
||||
try:
|
||||
cap.set(cv2.CAP_PROP_AUTO_EXPOSURE, 0)
|
||||
except Exception as e:
|
||||
print(f"无法设置自动曝光参数: {e}")
|
||||
|
||||
frame_queue = queue.Queue(maxsize=80)
|
||||
processed_frame_queue = queue.Queue(maxsize=40)
|
||||
|
||||
size = (1920, 1080)
|
||||
sizeStr = f"{size[0]}x{size[1]}"
|
||||
|
||||
command = [
|
||||
'ffmpeg', '-y',
|
||||
'-f', 'rawvideo', '-vcodec', 'rawvideo',
|
||||
'-pix_fmt', 'bgr24',
|
||||
'-s', sizeStr,
|
||||
'-r', '30',
|
||||
'-i', '-',
|
||||
'-c:v', 'libx264',
|
||||
'-preset', 'ultrafast',
|
||||
'-tune', 'zerolatency',
|
||||
'-x264-params', 'sei=0',
|
||||
'-pix_fmt', 'yuv420p',
|
||||
'-f', 'flv',
|
||||
'-g', '30',
|
||||
'-keyint_min', '30',
|
||||
'-sc_threshold', '0',
|
||||
'-b:v', '2500k',
|
||||
'-maxrate', '3000k',
|
||||
'-bufsize', '3000k',
|
||||
'-threads', '4',
|
||||
'-vsync', '1',
|
||||
rtmp
|
||||
]
|
||||
|
||||
print(f"启动FFmpeg推流到: {rtmp}")
|
||||
pipe = subprocess.Popen(command, shell=False, stdin=subprocess.PIPE,
|
||||
stdout=subprocess.PIPE, stderr=subprocess.PIPE,
|
||||
bufsize=10*1024*1024)
|
||||
|
||||
def monitor_ffmpeg_output(pipe):
|
||||
while not stop_event.is_set():
|
||||
line = pipe.stderr.readline().decode('utf-8', errors='ignore')
|
||||
if line and ("error" in line.lower()):
|
||||
print(f"FFmpeg错误: {line.strip()}")
|
||||
if "Cannot open connection" in line:
|
||||
stop_event.set()
|
||||
break
|
||||
|
||||
Thread(target=monitor_ffmpeg_output, args=(pipe,), daemon=True).start()
|
||||
|
||||
read_thread = Thread(target=read_frames, args=(cap, frame_queue), daemon=True, name="ReadThread")
|
||||
process_thread = Thread(target=process_frames, args=(frame_queue, processed_frame_queue, ov_model, cls, confidence), daemon=True, name="ProcessThread")
|
||||
write_thread = Thread(target=write_frames, args=(processed_frame_queue, pipe, size), daemon=True, name="WriteThread")
|
||||
|
||||
print("开始推流处理...")
|
||||
read_thread.start()
|
||||
process_thread.start()
|
||||
write_thread.start()
|
||||
|
||||
last_check = time.time()
|
||||
while getIfAI() and not stop_event.is_set():
|
||||
if not all([t.is_alive() for t in [read_thread, process_thread, write_thread]]):
|
||||
print("检测到线程停止,退出")
|
||||
stop_event.set()
|
||||
break
|
||||
if pipe.poll() is not None:
|
||||
print("FFmpeg退出")
|
||||
stop_event.set()
|
||||
break
|
||||
if time.time() - last_check > 30:
|
||||
print(f"输入队列: {frame_queue.qsize()}/{frame_queue.maxsize} | 输出队列: {processed_frame_queue.qsize()}/{processed_frame_queue.maxsize}")
|
||||
last_check = time.time()
|
||||
time.sleep(0.1)
|
||||
|
||||
except Exception as e:
|
||||
print(f"错误: {e}")
|
||||
finally:
|
||||
print("清理资源...")
|
||||
stop_event.set()
|
||||
setIfAI(False)
|
||||
|
||||
for t in [read_thread, process_thread, write_thread]:
|
||||
if t and t.is_alive():
|
||||
t.join(timeout=2)
|
||||
|
||||
try:
|
||||
if cap: cap.release()
|
||||
if pipe:
|
||||
try:
|
||||
import signal
|
||||
os.kill(pipe.pid, signal.SIGTERM)
|
||||
except: pass
|
||||
pipe.stdin.close()
|
||||
pipe.terminate()
|
||||
try:
|
||||
pipe.wait(timeout=2)
|
||||
except:
|
||||
pipe.kill()
|
||||
except Exception as e:
|
||||
print(f"释放资源时出错: {e}")
|
||||
|
||||
try:
|
||||
cv2.destroyAllWindows()
|
||||
except:
|
||||
pass
|
||||
print("资源释放完毕")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
sn = "1581F6QAD243C00BP71E"
|
||||
video_path = f"rtmp://222.212.85.86:1935/live/{sn}"
|
||||
# FFmpeg 推流地址
|
||||
rtmp = f"rtmp://222.212.85.86:1935/live/{sn}ai"
|
||||
|
||||
try:
|
||||
startAIVideo2(video_path, rtmp, "best.pt", [0, 1, 2, 3, 4],0.4)
|
||||
except KeyboardInterrupt:
|
||||
print("程序被用户中断")
|
||||
stopAIVideo()
|
||||
except Exception as e:
|
||||
print(f"程序异常: {e}")
|
||||
|
48
ai3/minio_helper.py
Normal file
48
ai3/minio_helper.py
Normal file
@ -0,0 +1,48 @@
|
||||
|
||||
import os
|
||||
from minio import Minio
|
||||
from minio.error import S3Error
|
||||
|
||||
bucket="300bdf2b-a150-406e-be63-d28bd29b409f"
|
||||
# 替换为你的MinIO服务器地址、访问密钥和秘密密钥
|
||||
def getClient():
|
||||
minio_client = Minio(
|
||||
"222.212.85.86:9000",
|
||||
access_key="WuRenJi",
|
||||
secure=False,
|
||||
secret_key="WRJ@2024",)
|
||||
return minio_client
|
||||
|
||||
def getPath2(object):
|
||||
#dir="C:/sy/movies/"
|
||||
dir=os.getcwd()+"/"
|
||||
baseName=object
|
||||
s1=baseName.rfind("/")
|
||||
dir2=(dir+baseName[0:s1+1]).replace("/","\\")
|
||||
fName=baseName[s1+1:int(len(baseName))]
|
||||
os.makedirs(dir2, exist_ok=True)
|
||||
file_path = os.path.join(dir2, fName)
|
||||
return file_path
|
||||
|
||||
def upLoad(obj,path):
|
||||
try:
|
||||
minio_client=getClient()
|
||||
minio_client.fput_object(bucket, obj, path)
|
||||
return True
|
||||
except S3Error as e:
|
||||
return False
|
||||
|
||||
def downLoad(obj):
|
||||
path=getPath2(obj)
|
||||
if os.path.exists(path):
|
||||
return path
|
||||
# 从MinIO的存储桶和对象名称下载
|
||||
try:
|
||||
minio_client=getClient()
|
||||
minio_client.fget_object(bucket, obj, path)
|
||||
return path
|
||||
except S3Error as e:
|
||||
return ""
|
||||
|
||||
if __name__ == '__main__':
|
||||
upLoad("aaa/yolo_api.py","yolo_api.py")
|
50
ai3/sqlhelp.py
Normal file
50
ai3/sqlhelp.py
Normal file
@ -0,0 +1,50 @@
|
||||
import yaml
|
||||
import psycopg2
|
||||
|
||||
def read_sql_config(yaml_name):
|
||||
"""
|
||||
读取 SQL 配置
|
||||
"""
|
||||
yaml_path = f"{yaml_name}.yaml"
|
||||
with open(yaml_path, 'r', encoding='utf-8') as f:
|
||||
config = yaml.safe_load(f)
|
||||
sql_config = config.get('sql')
|
||||
if not sql_config:
|
||||
raise ValueError("未找到 'sql' 配置块")
|
||||
return sql_config
|
||||
|
||||
def get_user_power(user_id: str, yaml_name: str) -> int | None:
|
||||
"""
|
||||
根据 user_id 查询数据库中对应的 power,找不到返回 None
|
||||
"""
|
||||
conn = None
|
||||
try:
|
||||
sql_config = read_sql_config(yaml_name)
|
||||
conn = psycopg2.connect(
|
||||
dbname=sql_config['dbname'],
|
||||
user=sql_config['user'],
|
||||
password=sql_config['password'],
|
||||
host=sql_config['host'],
|
||||
port=sql_config['port']
|
||||
)
|
||||
|
||||
conn.autocommit = True # 只读查询推荐设置
|
||||
with conn.cursor() as cur:
|
||||
cur.execute("SELECT * FROM public.threduser where user_id=%s;", (user_id,))
|
||||
row = cur.fetchone()
|
||||
if row:
|
||||
return row[3]
|
||||
else:
|
||||
return None
|
||||
except Exception as e:
|
||||
print(f"数据库操作异常: {e}")
|
||||
return None
|
||||
finally:
|
||||
if conn:
|
||||
conn.close()
|
||||
|
||||
if __name__ == '__main__':
|
||||
user_id = '20250801'
|
||||
yaml_name = 'config'
|
||||
power = get_user_power(user_id, yaml_name)
|
||||
print(power)
|
BIN
ai3/yolo11n.pt
Normal file
BIN
ai3/yolo11n.pt
Normal file
Binary file not shown.
622
ai3/yolo_api.py
Normal file
622
ai3/yolo_api.py
Normal file
@ -0,0 +1,622 @@
|
||||
from sanic import Sanic, json
|
||||
from sanic.response import json as json_response
|
||||
from sanic.exceptions import Unauthorized, NotFound, SanicException
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Dict, Any, Callable
|
||||
import uuid
|
||||
import logging
|
||||
import asyncio
|
||||
import traceback
|
||||
from datetime import datetime
|
||||
from cv_video import startAIVideo,stopAIVideo,getIfAI
|
||||
from sanic_cors import CORS
|
||||
from sqlhelp import get_user_power
|
||||
import os
|
||||
import signal
|
||||
import psutil
|
||||
|
||||
# 配置日志
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||
)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# 服务状态标志
|
||||
service_status = {"is_healthy": True, "last_error": None, "error_time": None}
|
||||
|
||||
# 配置类
|
||||
class Config:
|
||||
VALID_TOKEN = "5e8899fe-dc74-4280-8169-2f4d185f3afa"
|
||||
MAX_ACTIVE_TASKS = 10
|
||||
DEFAULT_CONFIDENCE = 0.5
|
||||
RESTART_DELAY = 2 # 服务尝试自动恢复前的延迟(秒)
|
||||
|
||||
|
||||
@dataclass
|
||||
class StreamRequest:
|
||||
source_url: str
|
||||
push_url: str
|
||||
model_path: str
|
||||
detect_classes: List[str]
|
||||
user_id: str = None
|
||||
confidence: float = Config.DEFAULT_CONFIDENCE
|
||||
|
||||
def validate(self) -> None:
|
||||
"""验证请求参数"""
|
||||
if not self.source_url or not self.push_url:
|
||||
raise ValueError("Source URL and Push URL are required")
|
||||
|
||||
if not self.detect_classes:
|
||||
raise ValueError("At least one detection class must be specified")
|
||||
if not 0 < self.confidence < 1:
|
||||
raise ValueError("Confidence must be between 0 and 1")
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, data: Dict[str, Any]) -> 'StreamRequest':
|
||||
try:
|
||||
instance = cls(
|
||||
source_url=data['source_url'],
|
||||
push_url=data['push_url'],
|
||||
model_path=data['model_path'],
|
||||
detect_classes=data['detect_classes'],
|
||||
user_id=data['user_id'],
|
||||
confidence=data.get('confidence', Config.DEFAULT_CONFIDENCE)
|
||||
)
|
||||
instance.validate()
|
||||
return instance
|
||||
except KeyError as e:
|
||||
raise ValueError(f"Missing required field: {str(e)}")
|
||||
|
||||
class TaskManager:
|
||||
def __init__(self):
|
||||
self.active_tasks: Dict[str, Dict[str, Any]] = {}
|
||||
self.task_status: Dict[str, str] = {}
|
||||
self.task_timestamps: Dict[str, datetime] = {}
|
||||
self.stop_handles: Dict[str, Callable] = {} # 新增:每个任务的停止函数
|
||||
self.task_callbacks: Dict[str, Callable] = {} # ✅ 添加这个属性,用于回调任务完成信息
|
||||
|
||||
def add_task(self, task_id: str, task_info: Dict[str, Any], stop_handle: Callable) -> None:
|
||||
"""添加新任务"""
|
||||
if len(self.active_tasks) >= Config.MAX_ACTIVE_TASKS:
|
||||
raise ValueError("Maximum number of active tasks reached")
|
||||
|
||||
self.active_tasks[task_id] = task_info
|
||||
self.task_status[task_id] = "running"
|
||||
self.task_timestamps[task_id] = datetime.now()
|
||||
self.stop_handles[task_id] = stop_handle # 注册停止函数
|
||||
logger.info(f"Task {task_id} started")
|
||||
|
||||
def remove_task(self, task_id: str) -> None:
|
||||
"""移除任务"""
|
||||
if task_id in self.active_tasks:
|
||||
del self.active_tasks[task_id]
|
||||
del self.task_status[task_id]
|
||||
del self.task_timestamps[task_id]
|
||||
self.stop_handles.pop(task_id, None) # 同时移除停止句柄
|
||||
logger.info(f"Task {task_id} removed")
|
||||
|
||||
def get_task_info(self, task_id: str) -> Dict[str, Any]:
|
||||
"""获取任务信息"""
|
||||
if task_id not in self.active_tasks:
|
||||
raise NotFound("Task not found")
|
||||
|
||||
return {
|
||||
"task_info": self.active_tasks[task_id],
|
||||
"status": self.task_status[task_id],
|
||||
"start_time": self.task_timestamps[task_id].isoformat()
|
||||
}
|
||||
|
||||
def stop_task(self, task_id: str) -> bool:
|
||||
"""只停止一个任务"""
|
||||
if task_id not in self.active_tasks:
|
||||
logger.warning(f"Task {task_id} 不存在")
|
||||
return False
|
||||
|
||||
stop_handle = self.stop_handles.get(task_id)
|
||||
if not stop_handle:
|
||||
logger.warning(f"Task {task_id} 无法停止(未注册停止函数)")
|
||||
return False
|
||||
|
||||
try:
|
||||
stop_handle() # 执行停止函数(你需传入能关闭 FFmpeg 或线程的回调)
|
||||
self.task_status[task_id] = "stopped"
|
||||
logger.info(f"Task {task_id} 停止成功")
|
||||
return True
|
||||
except Exception as e:
|
||||
logger.error(f"停止任务 {task_id} 出错:{e}")
|
||||
self.task_status[task_id] = "error"
|
||||
return False
|
||||
|
||||
def check_tasks_health(self) -> Dict[str, str]:
|
||||
"""检查任务健康状态"""
|
||||
unhealthy_tasks = {}
|
||||
for task_id in list(self.active_tasks.keys()):
|
||||
# 检查任务是否还在运行(通过getIfAI()函数)
|
||||
if not getIfAI():
|
||||
unhealthy_tasks[task_id] = "stopped"
|
||||
logger.warning(f"Task {task_id} appears to be stopped unexpectedly")
|
||||
return unhealthy_tasks
|
||||
|
||||
def mark_all_tasks_as_stopped(self):
|
||||
"""标记所有任务为已停止状态"""
|
||||
for task_id in list(self.active_tasks.keys()):
|
||||
self.task_status[task_id] = "stopped"
|
||||
logger.warning("已将所有任务标记为停止状态")
|
||||
|
||||
|
||||
app = Sanic("YoloStreamServiceOut")
|
||||
CORS(app)
|
||||
task_manager = TaskManager()
|
||||
|
||||
async def safe_stop_ai_video():
|
||||
"""安全地停止AI视频处理,带有错误处理和恢复机制"""
|
||||
try:
|
||||
await asyncio.to_thread(stopAIVideo)
|
||||
return True
|
||||
except Exception as e:
|
||||
error_msg = f"停止AI视频处理出错: {str(e)}\n{traceback.format_exc()}"
|
||||
logger.error(error_msg)
|
||||
|
||||
# 标记服务状态为不健康
|
||||
service_status["is_healthy"] = False
|
||||
service_status["last_error"] = str(e)
|
||||
service_status["error_time"] = datetime.now().isoformat()
|
||||
|
||||
# 强制结束所有任务
|
||||
task_manager.mark_all_tasks_as_stopped()
|
||||
|
||||
# 尝试通过其他方式杀死可能存在的进程
|
||||
try:
|
||||
|
||||
current_process = psutil.Process(os.getpid())
|
||||
# 查找并终止ffmpeg子进程
|
||||
for child in current_process.children(recursive=True):
|
||||
try:
|
||||
child_name = child.name().lower()
|
||||
if 'ffmpeg' in child_name:
|
||||
logger.info(f"强制终止子进程: {child.pid} ({child_name})")
|
||||
child.send_signal(signal.SIGTERM)
|
||||
except Exception as child_e:
|
||||
logger.error(f"终止子进程出错: {str(child_e)}")
|
||||
except Exception as kill_e:
|
||||
logger.error(f"尝试清理进程时出错: {str(kill_e)}")
|
||||
|
||||
# 等待一段时间让系统恢复
|
||||
await asyncio.sleep(Config.RESTART_DELAY)
|
||||
|
||||
# 重置服务状态
|
||||
service_status["is_healthy"] = True
|
||||
return False
|
||||
|
||||
def verify_token(request) -> None:
|
||||
"""验证请求token"""
|
||||
token = request.headers.get('X-API-Token')
|
||||
if not token or token != Config.VALID_TOKEN:
|
||||
logger.warning("Invalid token attempt")
|
||||
raise Unauthorized("Invalid token")
|
||||
|
||||
async def verify_userid(request) -> None:
|
||||
"""验证请求userid"""
|
||||
# 解析并验证请求数据
|
||||
stream_request = StreamRequest.from_dict(request.json)
|
||||
userid = stream_request.user_id
|
||||
print(userid)
|
||||
if not userid:
|
||||
logger.warning("userid not define")
|
||||
raise Unauthorized("Invalid userid")
|
||||
if get_user_power(userid,"config") < 1:
|
||||
logger.warning("user have not power")
|
||||
raise Unauthorized("user have not power")
|
||||
|
||||
async def detection(request):
|
||||
# 检查服务健康状态
|
||||
if not service_status["is_healthy"]:
|
||||
logger.warning(f"服务处于不健康状态,上次错误: {service_status['last_error']} 于 {service_status['error_time']}")
|
||||
service_status["is_healthy"] = True
|
||||
|
||||
# 停止所有现有任务
|
||||
for task_id in list(task_manager.active_tasks.keys()):
|
||||
logger.info(f"停止现有任务 {task_id} 以启动新任务")
|
||||
try:
|
||||
stop_cb = task_manager.task_callbacks.get(task_id, safe_stop_ai_video)
|
||||
success = await stop_cb()
|
||||
task_manager.remove_task(task_id)
|
||||
except Exception as e:
|
||||
logger.error(f"停止任务时出错: {e}")
|
||||
task_manager.mark_all_tasks_as_stopped()
|
||||
|
||||
# 解析请求参数
|
||||
stream_request = StreamRequest.from_dict(request.json)
|
||||
task_id = str(uuid.uuid4())
|
||||
|
||||
# 替换地址
|
||||
# new_source_url = stream_request.source_url.replace("222.212.85.86", "192.168.10.5")
|
||||
# new_push_url = stream_request.push_url.replace("222.212.85.86", "192.168.10.5")
|
||||
|
||||
try:
|
||||
await asyncio.to_thread(
|
||||
startAIVideo,
|
||||
stream_request.source_url,
|
||||
stream_request.push_url,
|
||||
stream_request.model_path,
|
||||
stream_request.detect_classes,
|
||||
stream_request.confidence
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"启动AI视频处理失败: {e}")
|
||||
return json_response({
|
||||
"status": "error",
|
||||
"message": f"Failed to start AI video processing: {str(e)}"
|
||||
}, status=500)
|
||||
|
||||
# ✅ 注册 stop_callback(如你使用的为通用函数)
|
||||
task_manager.add_task(
|
||||
task_id,
|
||||
{
|
||||
"source_url": stream_request.source_url,
|
||||
"push_url": stream_request.push_url,
|
||||
"model_path": stream_request.model_path,
|
||||
"detect_classes": stream_request.detect_classes,
|
||||
"confidence": stream_request.confidence
|
||||
},
|
||||
stop_handle=safe_stop_ai_video # 修正参数名
|
||||
)
|
||||
|
||||
return json_response({
|
||||
"status": "success",
|
||||
"task_id": task_id,
|
||||
"message": "Detection started successfully"
|
||||
})
|
||||
|
||||
@app.post("/ai/stream/detect1")
|
||||
async def start_detection1(request):
|
||||
try:
|
||||
await verify_userid(request)
|
||||
try:
|
||||
verify_token(request)
|
||||
return await detection(request)
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error: {str(e)}", exc_info=True)
|
||||
return json_response({"status": "error", "message": f"Internal server error: {str(e)}"}, status=500)
|
||||
except ValueError as e:
|
||||
logger.error(f"Validation error: {str(e)}")
|
||||
return json_response({"status": "error", "message": str(e)}, status=400)
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error: {str(e)}", exc_info=True)
|
||||
return json_response({"status": "error", "message": f"Internal server error: {str(e)}"}, status=500)
|
||||
|
||||
@app.post("/ai/stream/detect")
|
||||
async def start_detection(request):
|
||||
try:
|
||||
verify_token(request)
|
||||
detection(request)
|
||||
except ValueError as e:
|
||||
logger.error(f"Validation error: {str(e)}")
|
||||
return json_response({"status": "error", "message": str(e)}, status=400)
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error: {str(e)}", exc_info=True)
|
||||
return json_response({"status": "error", "message": f"Internal server error: {str(e)}"}, status=500)
|
||||
|
||||
@app.post("/ai/stream/<task_id>")
|
||||
async def stop_detection(request, task_id: str):
|
||||
try:
|
||||
verify_token(request)
|
||||
|
||||
# 检查任务是否存在
|
||||
try:
|
||||
task_info = task_manager.get_task_info(task_id)
|
||||
except NotFound:
|
||||
return json_response({"status": "error", "message": "Task not found"}, status=404)
|
||||
|
||||
# 调用 task_callbacks 中的停止函数(如果有)
|
||||
stop_callback = task_manager.task_callbacks.get(task_id)
|
||||
if stop_callback:
|
||||
success = await stop_callback()
|
||||
else:
|
||||
logger.warning(f"Task {task_id} has no stop callback, using default safe_stop_ai_video")
|
||||
success = await safe_stop_ai_video()
|
||||
|
||||
# 无论成功与否都要移除任务
|
||||
task_manager.remove_task(task_id)
|
||||
|
||||
if not success:
|
||||
logger.warning(f"停止任务 {task_id} 失败,但已移除任务记录")
|
||||
return json_response({
|
||||
"status": "warning",
|
||||
"message": "Task removal completed with warnings"
|
||||
})
|
||||
|
||||
return json_response({
|
||||
"status": "success",
|
||||
"message": f"Detection for task {task_id} stopped successfully"
|
||||
})
|
||||
except NotFound as e:
|
||||
return json_response({"status": "error", "message": str(e)}, status=404)
|
||||
except Exception as e:
|
||||
logger.error(f"Error stopping task {task_id}: {str(e)}", exc_info=True)
|
||||
# 尝试标记任务为停止状态
|
||||
try:
|
||||
if task_id in task_manager.task_status:
|
||||
task_manager.task_status[task_id] = "error_during_stop"
|
||||
except:
|
||||
pass
|
||||
return json_response({"status": "error", "message": f"Internal server error: {str(e)}"}, status=500)
|
||||
|
||||
|
||||
@app.post("/ai/stream/stopTask1")
|
||||
async def stopTask1(request):
|
||||
try:
|
||||
verify_userid(request)
|
||||
try:
|
||||
verify_token(request)
|
||||
jsondata = await request.json()
|
||||
task_id = jsondata.get("task_id")
|
||||
if not task_id:
|
||||
return json_response({"status": "error", "message": "task_id is required"}, status=400)
|
||||
|
||||
try:
|
||||
task_info = task_manager.get_task_info(task_id)
|
||||
logger.info(f"Stopping task: {task_id} -> {task_info}")
|
||||
# 调用对应任务的停止回调
|
||||
stop_callback = task_manager.task_callbacks.get(task_id)
|
||||
if stop_callback:
|
||||
success = await stop_callback()
|
||||
else:
|
||||
logger.warning(f"No stop callback found for task {task_id}")
|
||||
success = False
|
||||
|
||||
task_manager.remove_task(task_id)
|
||||
|
||||
if not success:
|
||||
return json_response({
|
||||
"status": "warning",
|
||||
"message": "Task removal completed, but stop failed"
|
||||
})
|
||||
return json_response({
|
||||
"status": "success",
|
||||
"message": "Task stopped successfully"
|
||||
})
|
||||
except NotFound:
|
||||
return json_response({"status": "error", "message": "Task not found"}, status=404)
|
||||
except Exception as e:
|
||||
logger.error(f"Error stopping task {task_id}: {str(e)}", exc_info=True)
|
||||
try:
|
||||
if task_id in task_manager.task_status:
|
||||
task_manager.task_status[task_id] = "error_during_stop"
|
||||
except:
|
||||
pass
|
||||
return json_response({"status": "error", "message": f"Internal server error: {str(e)}"}, status=500)
|
||||
except:
|
||||
logger.error(f"Unexpected error: {str(e)}", exc_info=True)
|
||||
return json_response({"status": "error", "message": f"Internal server error: {str(e)}"}, status=500)
|
||||
|
||||
@app.get("/ai/stream/<task_id>")
|
||||
async def get_task_status(request, task_id: str):
|
||||
try:
|
||||
verify_token(request)
|
||||
task_info = task_manager.get_task_info(task_id)
|
||||
|
||||
# 检查任务是否真的在运行
|
||||
if not getIfAI() and task_info["status"] == "running":
|
||||
task_info["status"] = "stopped_unexpectedly"
|
||||
logger.warning(f"Task {task_id} 显示为运行状态,但实际已停止")
|
||||
|
||||
return json_response({
|
||||
"status": "success",
|
||||
"task_id": task_id,
|
||||
**task_info
|
||||
})
|
||||
except NotFound as e:
|
||||
return json_response({"status": "error", "message": str(e)}, status=404)
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting task status {task_id}: {str(e)}", exc_info=True)
|
||||
return json_response({"status": "error", "message": f"Internal server error: {str(e)}"}, status=500)
|
||||
|
||||
@app.get("/ai/stream/tasks")
|
||||
async def list_tasks(request):
|
||||
"""获取所有活动任务列表"""
|
||||
try:
|
||||
verify_token(request)
|
||||
|
||||
# 检查所有任务的健康状态
|
||||
unhealthy_tasks = task_manager.check_tasks_health()
|
||||
for task_id, status in unhealthy_tasks.items():
|
||||
if task_id in task_manager.task_status:
|
||||
task_manager.task_status[task_id] = status
|
||||
|
||||
tasks = {
|
||||
task_id: task_manager.get_task_info(task_id)
|
||||
for task_id in task_manager.active_tasks.keys()
|
||||
}
|
||||
return json_response({
|
||||
"status": "success",
|
||||
"tasks": tasks
|
||||
})
|
||||
except Exception as e:
|
||||
logger.error(f"Error listing tasks: {str(e)}", exc_info=True)
|
||||
return json_response({"status": "error", "message": f"Internal server error: {str(e)}"}, status=500)
|
||||
|
||||
@app.post("/ai/stream/stopTasks")
|
||||
async def stop_all_detections(request):
|
||||
"""停止所有活动任务"""
|
||||
try:
|
||||
verify_token(request)
|
||||
|
||||
if not task_manager.active_tasks:
|
||||
return json_response({
|
||||
"status": "success",
|
||||
"message": "No active tasks to stop"
|
||||
})
|
||||
|
||||
# 停止所有任务
|
||||
success = await safe_stop_ai_video()
|
||||
|
||||
# 无论成功与否,都移除所有任务
|
||||
for task_id in list(task_manager.active_tasks.keys()):
|
||||
task_manager.remove_task(task_id)
|
||||
|
||||
if not success:
|
||||
return json_response({
|
||||
"status": "warning",
|
||||
"message": "Tasks stopped with warnings"
|
||||
})
|
||||
|
||||
return json_response({
|
||||
"status": "success",
|
||||
"message": "All detections stopped successfully"
|
||||
})
|
||||
except Exception as e:
|
||||
logger.error(f"Error stopping all tasks: {str(e)}", exc_info=True)
|
||||
# 尝试标记所有任务为停止状态
|
||||
task_manager.mark_all_tasks_as_stopped()
|
||||
return json_response({"status": "error", "message": f"Internal server error: {str(e)}"}, status=500)
|
||||
|
||||
@app.get("/ai/health")
|
||||
async def health_check(request):
|
||||
"""服务健康检查端点"""
|
||||
try:
|
||||
# 不需要验证token,这个接口可以用于监控系统检查服务状态
|
||||
unhealthy_tasks = task_manager.check_tasks_health()
|
||||
|
||||
return json_response({
|
||||
"status": "success",
|
||||
"service": "running" if service_status["is_healthy"] else "degraded",
|
||||
"active_tasks": len(task_manager.active_tasks),
|
||||
"unhealthy_tasks": unhealthy_tasks,
|
||||
"last_error": service_status["last_error"],
|
||||
"error_time": service_status["error_time"],
|
||||
"timestamp": datetime.now().isoformat()
|
||||
})
|
||||
except Exception as e:
|
||||
logger.error(f"健康检查失败: {str(e)}", exc_info=True)
|
||||
return json_response({
|
||||
"status": "error",
|
||||
"service": "degraded",
|
||||
"error": str(e),
|
||||
"timestamp": datetime.now().isoformat()
|
||||
}, status=500)
|
||||
|
||||
@app.route("/ai/reset", methods=["POST"])
|
||||
async def reset_service(request):
|
||||
"""重置服务状态,清理所有任务和进程"""
|
||||
try:
|
||||
verify_token(request)
|
||||
|
||||
# 尝试停止AI视频处理
|
||||
await safe_stop_ai_video()
|
||||
|
||||
# 清理所有任务
|
||||
for task_id in list(task_manager.active_tasks.keys()):
|
||||
task_manager.remove_task(task_id)
|
||||
|
||||
# 重置服务状态
|
||||
service_status["is_healthy"] = True
|
||||
service_status["last_error"] = None
|
||||
service_status["error_time"] = None
|
||||
|
||||
# 尝试清理可能存在的僵尸进程
|
||||
try:
|
||||
import os
|
||||
import signal
|
||||
import psutil
|
||||
|
||||
current_process = psutil.Process(os.getpid())
|
||||
zombie_count = 0
|
||||
|
||||
for child in current_process.children(recursive=True):
|
||||
try:
|
||||
if child.status() == psutil.STATUS_ZOMBIE:
|
||||
zombie_count += 1
|
||||
child.send_signal(signal.SIGKILL)
|
||||
except:
|
||||
pass
|
||||
|
||||
return json_response({
|
||||
"status": "success",
|
||||
"message": f"Service reset successful. Cleaned {zombie_count} zombie processes."
|
||||
})
|
||||
except Exception as e:
|
||||
logger.error(f"清理僵尸进程时出错: {e}")
|
||||
return json_response({
|
||||
"status": "warning",
|
||||
"message": "Service reset with warnings"
|
||||
})
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"重置服务时出错: {str(e)}", exc_info=True)
|
||||
return json_response({
|
||||
"status": "error",
|
||||
"message": f"Failed to reset service: {str(e)}"
|
||||
}, status=500)
|
||||
|
||||
@app.route("/ai/stream/restart/<task_id>", methods=["POST"])
|
||||
async def restart_task(request, task_id: str):
|
||||
"""重启指定任务"""
|
||||
try:
|
||||
verify_token(request)
|
||||
|
||||
# 获取任务信息
|
||||
try:
|
||||
task_info = task_manager.get_task_info(task_id)["task_info"]
|
||||
except NotFound:
|
||||
return json_response({"status": "error", "message": "Task not found"}, status=404)
|
||||
|
||||
# 先停止任务
|
||||
success = await safe_stop_ai_video()
|
||||
task_manager.remove_task(task_id)
|
||||
|
||||
if not success:
|
||||
logger.warning("停止任务出现问题,尝试继续重启")
|
||||
|
||||
# 重新启动任务
|
||||
new_task_id = str(uuid.uuid4())
|
||||
|
||||
try:
|
||||
await asyncio.to_thread(
|
||||
startAIVideo,
|
||||
task_info["source_url"],
|
||||
task_info["push_url"],
|
||||
task_info["model_path"],
|
||||
task_info["detect_classes"],
|
||||
task_info["confidence"]
|
||||
)
|
||||
|
||||
# 记录新任务信息
|
||||
task_manager.add_task(new_task_id, task_info)
|
||||
|
||||
return json_response({
|
||||
"status": "success",
|
||||
"old_task_id": task_id,
|
||||
"new_task_id": new_task_id,
|
||||
"message": "Task restarted successfully"
|
||||
})
|
||||
except Exception as e:
|
||||
logger.error(f"重启任务失败: {e}")
|
||||
return json_response({
|
||||
"status": "error",
|
||||
"message": f"Failed to restart task: {str(e)}"
|
||||
}, status=500)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"重启任务时出错: {str(e)}", exc_info=True)
|
||||
return json_response({"status": "error", "message": f"Internal server error: {str(e)}"}, status=500)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# 保证服务启动前没有残留任务
|
||||
try:
|
||||
stopAIVideo()
|
||||
print("服务启动前清理完成")
|
||||
except:
|
||||
print("服务启动前清理失败,但仍将继续")
|
||||
|
||||
# 安装psutil库,用于进程管理
|
||||
try:
|
||||
import psutil
|
||||
except ImportError:
|
||||
import subprocess
|
||||
import sys
|
||||
print("正在安装psutil库...")
|
||||
subprocess.check_call([sys.executable, "-m", "pip", "install", "psutil"])
|
||||
|
||||
app.run(host="0.0.0.0", port=12317, debug=False, access_log=True)
|
Loading…
x
Reference in New Issue
Block a user