2025-11-11 09:46:49 +08:00

259 lines
9.6 KiB
Python

import os
import re
import cv2
import numpy as np
import shutil
from concurrent.futures import ThreadPoolExecutor
# ------------------ 工具函数 ------------------
def clean_filename(name):
name = name.strip()
name = re.sub(r'[\s\r\n\t]+', '', name)
return name.lower()
def num_to_coord(num, cols, cell_width, cell_height, offset=1):
n = num - 1 + offset
r = n // cols
c = n % cols
x1 = c * cell_width
y1 = r * cell_height
x2 = x1 + cell_width
y2 = y1 + cell_height
return x1, y1, x2, y2
def polygon_to_yolo(poly, img_width, img_height):
flat = [coord for point in poly for coord in point]
return [flat[i] / (img_width if i % 2 == 0 else img_height) for i in range(len(flat))]
def convex_hull_poly(points):
if not points:
return []
pts = np.array(points, dtype=np.int32)
hull = cv2.convexHull(pts)
return hull.reshape(-1, 2).tolist()
def expand_polygon(poly, expand_px=3):
"""多边形顶点膨胀 expand_px 像素"""
if not poly:
return []
pts = np.array(poly, dtype=np.int32)
cx = np.mean(pts[:, 0])
cy = np.mean(pts[:, 1])
vec = pts - np.array([[cx, cy]])
norm = np.linalg.norm(vec, axis=1, keepdims=True)
norm[norm == 0] = 1
vec_unit = vec / norm
pts_expanded = pts + (vec_unit * expand_px).astype(int)
return pts_expanded.tolist()
color_map = {
0: (0, 255, 255), 1: (255, 0, 255), 2: (0, 255, 0), 3: (255, 0, 0),
4: (0, 0, 255), 5: (255, 255, 0), 6: (128, 128, 0), 7: (128, 0, 128),
8: (0, 128, 128), 9: (128, 128, 128), 10: (0, 0, 128), 11: (0, 128, 0)
}
# ------------------ 匹配图片 ------------------
def find_matching_image(txt_path, input_root):
txt_name = os.path.basename(txt_path).lower()
base_name = re.sub(r'(_partclass)?\.txt$', '', txt_name)
base_name = re.sub(r'\.jpg$', '', base_name)
for root, _, files in os.walk(input_root):
for f in files:
if f.lower().endswith((".jpg", ".jpeg", ".png")):
img_base = os.path.splitext(f)[0].lower()
if base_name == img_base:
return os.path.join(root, f)
return None
# ------------------ 原有处理函数(带多边形膨胀) ------------------
def process_pixel_txt(img_path, txt_path, class_map, output_root):
image = cv2.imread(img_path)
if image is None:
return False
h, w = image.shape[:2]
vis_img = image.copy()
yolo_labels = []
unknown_labels = set()
with open(txt_path, "r", encoding="utf-8") as f:
for line in f:
parts = line.strip().split()
if len(parts) < 5:
continue
try:
x, y, w_box, h_box = map(int, parts[:4])
except:
continue
label = parts[4]
cls_id = class_map.get(label, -1)
if cls_id == -1:
unknown_labels.add(label)
continue
poly = [(x, y), (x + w_box, y), (x + w_box, y + h_box), (x, y + h_box)]
hull = convex_hull_poly(poly)
hull = expand_polygon(hull, expand_px=3)
yolo_labels.append(f"{cls_id} " + " ".join(map(str, polygon_to_yolo(hull, w, h))))
cv2.polylines(vis_img, [np.array(hull, np.int32)], True,
color=color_map.get(cls_id, (255, 255, 255)), thickness=2)
if unknown_labels:
print(f"⚠️ 未知类别 {unknown_labels} 在文件: {txt_path}")
if not yolo_labels:
return False
base = os.path.splitext(os.path.basename(img_path))[0]
folder_img = os.path.join(output_root, "images")
os.makedirs(folder_img, exist_ok=True)
shutil.copy2(img_path, os.path.join(folder_img, os.path.basename(img_path)))
folder_labels = os.path.join(output_root, "labels")
os.makedirs(folder_labels, exist_ok=True)
with open(os.path.join(folder_labels, base + ".txt"), "w", encoding="utf-8") as f:
f.write("\n".join(yolo_labels))
folder_vis = os.path.join(output_root, "visual")
os.makedirs(folder_vis, exist_ok=True)
cv2.imwrite(os.path.join(folder_vis, base + "-visual.jpg"), vis_img)
print(f"✅ 已处理 Pixel TXT: {base}")
return True
def process_grid_txt(img_path, txt_path, class_map, output_root):
image = cv2.imread(img_path)
if image is None:
return False
h, w = image.shape[:2]
cell_width, cell_height = 108, 102
cols = max(1, w // cell_width)
vis_img = image.copy()
overlay = image.copy()
alpha = 0.5
yolo_labels = []
with open(txt_path, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if not line:
continue
numbers = re.findall(r"(\d+)(?=-|$)", line.split()[-1])
numbers = [int(n) for n in numbers]
cname = None
for key in class_map.keys():
if line.startswith(key):
cname = key
break
if cname is None or not numbers:
continue
for num in numbers:
x1, y1, x2, y2 = num_to_coord(num, cols, cell_width, cell_height)
cv2.rectangle(overlay, (x1, y1), (x2, y2), color_map.get(class_map[cname], (128, 128, 128)), -1)
cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0, image)
points = []
for num in numbers:
x1, y1, x2, y2 = num_to_coord(num, cols, cell_width, cell_height)
points.extend([(x1, y1), (x2, y1), (x2, y2), (x1, y2)])
hull = convex_hull_poly(points)
hull = expand_polygon(hull, expand_px=3)
cls_id = class_map[cname]
pts = np.array(hull, np.int32).reshape((-1, 1, 2))
cv2.polylines(vis_img, [pts], True, color_map.get(cls_id, (128, 128, 128)), 2)
yolo_labels.append(f"{cls_id} " + " ".join(map(str, polygon_to_yolo(hull, w, h))))
if not yolo_labels:
return False
base = os.path.splitext(os.path.basename(img_path))[0]
for folder_name in ["images", "labels", "visual", "highlighted"]:
folder = os.path.join(output_root, folder_name)
os.makedirs(folder, exist_ok=True)
shutil.copy2(img_path, os.path.join(output_root, "images", os.path.basename(img_path)))
with open(os.path.join(output_root, "labels", base + ".txt"), "w", encoding="utf-8") as f:
f.write("\n".join(yolo_labels))
cv2.imwrite(os.path.join(output_root, "visual", base + "-visual.jpg"), vis_img)
cv2.imwrite(os.path.join(output_root, "highlighted", base + "-highlighted.jpg"), image)
print(f"✅ 已处理 Grid TXT: {base}")
return True
# ------------------ 批量处理函数 ------------------
def batch_process_txt_first(input_root, output_root, mode_type="5211", max_workers=4):
if mode_type == "5211":
class_maps = {
"asphalt": class_map_asphalt,
"cream": class_map_cream,
"gravel": class_map_gravel,
}
elif mode_type == "5210":
class_maps = {
"asphalt": class_map_asphalt_road,
"cream": class_map_cream_road,
"gravel": class_map_gravel,
}
else:
raise ValueError("mode_type 必须是 '5210''5211'")
txt_files = []
for root, _, files in os.walk(input_root):
for file in files:
if file.lower().endswith(".txt"):
txt_files.append(os.path.join(root, file))
def process_single(txt_path):
img_path = find_matching_image(txt_path, input_root)
if not img_path:
print(f"⚠️ 未找到匹配图片: {txt_path}")
return
with open(txt_path, "r", encoding="utf-8") as f:
content = f.read().lower()
if any(k in content for k in ["水泥", "cement", "cream"]):
road_type = "cream"
elif any(k in content for k in ["沥青", "asphalt"]):
road_type = "asphalt"
else:
road_type = "gravel"
selected_map = class_maps[road_type]
output_folder = os.path.join(output_root, road_type)
os.makedirs(output_folder, exist_ok=True)
if "_partclass" in txt_path.lower():
process_grid_txt(img_path, txt_path, selected_map, output_folder)
else:
process_pixel_txt(img_path, txt_path, selected_map, output_folder)
with ThreadPoolExecutor(max_workers=max_workers) as executor:
executor.map(process_single, txt_files)
# ------------------ 类别映射 ------------------
class_map_asphalt = {
# "纵向裂缝": 0, "横向裂缝": 1, "网裂": 2, "坑槽": 3, "松散": 4,
"龟裂": 0, "块状裂缝": 1, "纵向裂缝": 2, "横向裂缝": 3, "沉陷": 4, "车辙": 5,
"波浪拥包": 6, "坑槽": 7, "松散": 8, "泛油": 9, "修补": 10,
}
class_map_cream = {
"破碎板": 0, "裂缝": 1, "坑洞": 2, "露骨": 3, "错台": 4, "拱起": 5,
}
class_map_gravel = {
"坑槽": 0, "沉陷": 1, "车辙": 2, "波浪搓板": 3,
}
class_map_asphalt_road = {
"龟裂": 0, "块状裂缝": 1, "纵向裂缝": 2, "横向裂缝": 3, "沉陷": 4, "车辙": 5,
"波浪拥包": 6, "坑槽": 7, "松散": 8, "泛油": 9, "修补": 10,
}
class_map_cream_road = {
"破碎板": 0, "裂缝": 1, "板角断裂": 2, "错台": 3, "拱起": 4, "边角剥落": 5,
"接缝料损坏": 6, "坑洞": 7, "唧泥": 8, "露骨": 9, "修补": 10,
}
# ------------------ 主程序 ------------------
if __name__ == "__main__":
input_root = r"D:\work\develop\LF-where\01"
output_root = r"D:\work\develop\LF-where\out"
mode_type = "5211" # 5211 或 5210
batch_process_txt_first(input_root, output_root, mode_type, max_workers=8)